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Abstract I present a multi-impact economic valuation framework called the Social Cost of
Atmospheric Release (SCAR) that extends the Social Cost of Carbon (SCC) used previously
for carbon dioxide (CO2) to a broader range of pollutants and impacts. Values consistently
incorporate health impacts of air quality along with climate damages. The latter include
damages associated with aerosol-induced hydrologic cycle changes that lead to net climate
benefits when reducing cooling aerosols. Evaluating a 1 % reduction in current global
emissions, benefits with a high discount rate are greatest for reductions of co-emitted products
of incomplete combustion (PIC), followed by sulfur dioxide (SO2), nitrogen oxides (NOx) and
then CO2, ammonia and methane. With a low discount rate, benefits are greatest for PIC, with
CO2 and SO2 next, followed by NOx and methane. These results suggest that efforts to
mitigate atmosphere-related environmental damages should target a broad set of emissions
including CO2, methane and aerosol/ozone precursors. Illustrative calculations indicate envi-
ronmental damages are $330-970 billion yr−1 for current US electricity generation (~14–34¢
per kWh for coal, ~4–18¢ for gas) and $3.80 (−1.80/+2.10) per gallon of gasoline ($4.80
(−3.10/+3.50) per gallon for diesel). These results suggest that total atmosphere-related
environmental damages plus generation costs are much greater for coal-fired power than other
types of electricity generation, and that damages associated with gasoline vehicles substantially
exceed those for electric vehicles.

1 Introduction

Societal assessment of environmental threats depends upon a variety of factors including
physical science-based estimates of the risk of impacts and economic valuation of those
impacts. Quantitative estimates of costs and benefits associated with particular policy options
can inform responses, but such valuations face a myriad of issues, including the choice of
which impacts to ‘internalize’ within the economic valuation, the value of future versus present
risk, and how to compare different types of impacts on a common scale (e.g. (Arrow et al.
2013; European Commission 1995; Johnson and Hope 2012; Muller et al. 2011; National
Research Council 2010, hereafter NRC2010; Nordhaus and Boyer 2000)).
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To examine these issues, I explore here the economic damages associated with a marginal
change in the atmospheric release of individual pollutants owing to their effects on climate and
air quality. Prior studies have provided compelling demonstrations of the importance of
linkages between climate change and air quality valuation (e.g. (Caplan and Silva 2005;
Nemet et al. 2010; Tollefsen et al. 2009)) and of the incorporation of economics into emission
metrics (e.g. (Johansson 2012; Tanaka et al. 2013)), but typically have not fully represented the
climate impact of short-lived emissions, especially aerosols and methane (e.g. (International
Monetary Fund 2013; Muller et al. 2011; NRC 2010)). As opposed to previous estimates of
damages associated with particular activities (e.g. electricity generation (European Commission
1995)), the general values presented here allow valuation of the impact of any sector or any
policy scenario whose emissions are known. While many uncertainties remain in this type of
analysis, and hence caution is advised in using these values in policy decisions, this evaluation
of a wide variety of pollutants nevertheless allows exploration of how society values human
welfare at different timescales and in response to different environmental threats.

This work builds upon the Social Cost of Carbon (SCC), a widely used methodology for
valuation of the estimated damages associated with an incremental increase in carbon dioxide
(CO2) emissions in a given year. The US Government describes it as being Bintended to
include (but not limited to) changes in net agricultural productivity, human health, property
damages from increased flood risk, and the value of ecosystem services due to climate
change.^ (US Government 2013; hereafter USG 2013; see also Electronic Supplementary
Material (ESM)).

Thus social costs for emissions of other pollutants should at minimum include their impacts
on these same quantities (health, agriculture, etc.). This applies even when their effects take
place via different processes than for CO2. For example, pollutants such as black carbon (BC),
organic carbon (OC), sulfur dioxide (SO2) or methane (CH4), affect human health both by
altering climate as CO2 does (hereafter climate-health impacts) but also by more directly
degrading air quality (hereafter composition-health impacts). Hence this work assesses impacts
of atmospheric pollutants regardless of the route by which they occur. It thus also builds upon
prior valuation of air quality-related health impacts of emissions (e.g. (Muller et al. 2011)).
Ideally, the social costs of emissions to the atmosphere should include all affected components
of human welfare.

Here I evaluate a broad Social Cost of Atmospheric Release (SCAR) for emissions of the
pollutants that are the major drivers of global mean climate change (Myhre et al. 2013) and of
the global health burden from poor air quality (particulate matter and ozone; (Lim et al. 2012))
(Table 1). Unlike the SCC, which has nearly always been evaluated for well-mixed greenhouse
gases only, the SCAR metric spans a wide range of pollutants, and thus facilitates discussion of
the relative importance of those emissions with primarily a near-term influence (years to
decades; aerosols, ozone precursors, methane and HFC-134a), including their composition-
health impacts, and those with effects that are large over long-terms (centuries; long-lived
greenhouse gases such as CO2 and N2O).

2 Methods

2.1 Basic climate damages

The first component of the SCAR is climate damages that are proportional to global mean
surface temperature change (equivalent to the traditional SCC). Global mean temperature
changes are driven by the global mean radiative forcing (RF) caused by each emitted
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compound. RF for most emissions is based on the IPCC AR5 (Myhre et al. 2013). RF
attributable to individual aerosol precursors including indirect cloud effects was not provided
in AR5, and hence to incorporate this important component for SO2, BC and OC I use a
combination of modeling and literature analysis (Shindell et al. 2012a; Shindell et al. 2009;
United Nations Environment Programme and World Meteorological Organization 2011;
hereafter UNEP 2011; see ESM). The relative uncertainties in RF presented in the AR5
(Myhre et al. 2013) are used for all emissions. These uncertainties, and all others used here,
are assumed to be 5–95 % confidence intervals (CI).

Forcing by non-CO2 emissions includes a component driven by the response of the carbon-
cycle to temperature changes induced by those emissions (as in the calculations for CO2 itself)
based on a reduced carbon uptake of 1 GtC per degree warming (Arora et al. 2013; Collins
et al. 2013b). The uncertainty in this effect is taken to be equal to the magnitude of the effect
itself (Collins et al. 2013b).

Temperature responses to forcings by each individual pollutant are calculated using the time
dependence of the impulse-response function from the Hadley Centre climate model (Boucher
et al. 2009). The magnitude is set to yield an equilibrium climate sensitivity (ECS) of 3.2 °C
for doubled CO2, consistent with the AR5 (Collins et al. 2013a). As valuation depends
strongly on the transient climate response, uncertainty in sensitivity is based on the range in
a recent study of the AR5 models (1.3–3.15 °C; (Shindell 2014)) relative to the mean of those
models (1.8 °C, hence −28 %/+75 %; those models also exhibited a mean ECS of 3.2 °C).

Basic climate damages for all pollutants in the SCAR are then calculated from their impact
on global mean temperature as in the SCC for CO2. The SCAR calculations presented here use
the DICE 2007 IAM damage function (Nordhaus 2008), which has damages proportional to
the square of the temperature change and equal to 1.8 % of world output at 2.5 °C (see ESM
for context). AR4 suggested that valuation of non-economic and economic impacts at 2.5 °C
together contributed ~65 % as much uncertainty to the SCC as did climate sensitivity (Yohe

Table 1 Pollutants examined here and their major impacts

Global mean surface
temperature impacta

Enhanced regional
hydrologic cycle impact

Pathway to composition-
health impacts

Carbon dioxide (CO2) Warming None

Methane (CH4) Warming Surface ozone

Nitrous oxide (N2O) Warming None

HFC-134a Warming None

Black carbon (BC) Warming X Surface PM2.5

Sulfur dioxide (SO2) Cooling X Surface PM2.5

Organic carbon (OC) Cooling X Surface PM2.5

Carbon monoxide (CO) Warming Surface ozone

Nitrogen oxides (NOx) Coolingb X Surface PM2.5 & ozone

Ammonia (NH3) Cooling X Surface PM2.5

Mercury (Hg)c None Bioaccumulation in fish

See ESM section 1.1 for discussion of additional pollutants that could be examined
a The global mean surface temperature impact is also a proxy for the many additional climate impacts that occur
alongside global mean temperature change, including changes in sea-level, rainfall, heatwaves, etc
b The uncertainty encompasses this agent causing warming
c Valuation of the health impacts of mercury emissions has been performed for the US (see ESM section 5), and
is discussed in the calculations of US sectoral impacts only
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et al. 2007). Hence I set the uncertainty of the damage function to 65 % of the mean
uncertainty associated with climate sensitivity.

GDP increases at 2±1 %yr−1, as in SRES scenarios, giving a mean 2100 value of $355
trillion, consistent with USG 2013. Reference temperature change follows a business-as-usual
trend with projected increases of 0.015 °C yr−1 (as in recent observations). These gradually
increase with time, then slow to 0.008 °C yr−1 after the total increase exceeds 4 °C and the
maximum tolerated warming is 4.5 °C assuming massive societal response to large changes
(similar to the ‘backstop’ technology deployed in DICE for large temperature changes). The
modeled time horizon is 350 years, but results are minimally sensitive to variations beyond
~150 years due to the warming limit. Uncertainty in the trend is ±0.005 °C yr−1. Mean
reference temperatures are ~3.8 °C greater than preindustrial in 2100, in accord with projec-
tions for the higher end emissions pathways in recent simulations (Forster et al. 2013). Values
are presented for 2010 emissions in 2007 $US (as in USG 2013).

The discount rate is an important choice in valuation of future damages. USG 2013 gives
2010 SCC values using three different constant discount rates, 5, 3 and 2.5 %, based on results
from several IAMs examining multiple scenarios for emissions, population, GDP, etc. I use the
same discount rates to facilitate comparison and as these reflect the consensus view of the US
government about which values reflect plausible choices. I also include analysis using a
constant discount rate of 1.4 %, the value used in Stern (2006). Although discount rate
selection is subjective, involving growth projections, risk aversion, and ethical choices (e.g.
future utility), the large wealth increase with 2–3 % annual GDP growth is less compatible
with very low discount rates. Therefore, for the 1.4 % discount rate case only, GDP increases at
1.3 yr−1, as in Stern (2006), with an uncertainty of +0.3/−0.5 % yr−1. Finally, authors have
argued for the use of a declining discount rate (DDR) (e.g. (Arrow et al. 2013; Gollier 2008)),
and I therefore also use a rate that starts at 4 % and decreases exponentially with a 250 year
time constant (i.e. the percentage rate is 4*exp(−t/250) where t is the time in years) which
approximates the mean behavior seen in several prior studies discussed in Arrow et al. (2013).
Note that the framework employed here does not directly include any economic response to
environmental damages other than the backstop assumption.

2.2 Additional climate-health valuation

The traditional SCC includes economic impacts of premature mortality and morbidity due to
climate change, with these climate-health impacts causing ~10–50 % of total damages in the
IAM studies summarized in Nordhaus and Boyer (2000). The DICE damage function used
here includes climate-health impacts attributable to tropical diseases only (see ESM). Recent
estimates of climate-health impacts by the World Health Organization (WHO) (Campbell-
Lendrum and Woodruff 2007) find large impacts attributable to other causes, however,
especially malnutrition, with 126,000 premature deaths attributed to the current warming
(~0.8 °C) via causes other than tropical diseases. I therefore perform additional climate-
health valuation calculations using this estimate, assuming these effects are also proportional
to the temperature change squared. Both the magnitude and long-term trend of climate-health
impacts clearly merit further study, however. As WHO provides only qualitative uncertainties,
I use an uncertainty of ±80 %, as for the composition-health impacts.

A consistent valuation methodology is used for climate-health and composition-health
impact calculations. The WHO found climate-health damages, especially malnutrition, to be
heavily weighted towards poorer developing nations (where carbonaceous emissions are
currently large). Climate-health calculations therefore use a Value of a Statistical Life (VSL)
of $1.7 million (for 2010), which is the nominal US-based VSL of $7.5 million adjusted to
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account for carbonaceous aerosol exposure- and population-weighted country-specific income
differences from prior analyses (UNEP 2011).

Socio-economic projections affect the climate-health damages. The VSL increases along
with per capita growth in GDP since it’s associated with the willingness-to-pay. As in basic
climate damage calculations, GDP increases at 2±1 % yr−1. Increases in population
are 0.4 % yr−1, increasing the number of people exposed to health impacts while
reducing per capita GDP increases. Baseline mortality decreases by 0.45±0.45 % yr−1,
with the mean value matching the optimistic scenario of Mathers and Loncar (2006)
and the range spanning their baseline scenario (~0 %) and the more optimistic trend
(~−0.9 %) in Murray and Lopez (1997).

In the WHO analysis, ~46 % of premature mortalities due to climate change are attributable
to malnutrition. Agricultural responses to climate change are expected to be highly sensitive to
CO2 fertilization effects on plants (Yohe et al. 2007). In particular, ~3–10 times more people
are at risk from hunger under future scenarios (across the high SRES A1F1 and low B1) when
the beneficial effects of CO2 fertilization at their maximum estimated effectiveness are
excluded (Parry et al. 2004). I assume a mid-range effectiveness with 3 times more malnutri-
tion cases for warming without CO2 fertilization, and an uncertainty of 100 % so that the
maximum (6 times more) is consistent with the central portion of the above estimate and the
minimum excludes any fertilization effect. Since positive historical non-CO2 RF has been
largely offset by negative aerosol forcing, I assume the current WHO analysis includes CO2

fertilization. Therefore, the climate-health effects of non-CO2 emissions associated with
malnutrition (46 %) are multiplied by 3±3 to account for the CO2 fertilization effect.

2.3 Valuation of regional precipitation changes due to aerosols

Multiple climate modeling studies have shown that both scattering and absorbing aerosols
induce strong regional hydrologic cycle changes (e.g. (Levy et al. 2013; Ramanathan and
Carmichael 2008; Wang et al. 2009)), and that there is typically a substantially greater
precipitation response per unit RF than for well-mixed greenhouse gases (Shindell et al.
2012a, b). As many impacts are closely related to regional changes in precipitation that
directly affect water and food, attribution of damages solely to temperature may be
a less accurate approximation for regionally highly uneven forcings. Therefore, I
include additional impacts stemming from regional disruption of the hydrologic cycle
for aerosols.

I assume all precipitation changes lead to net damages as they cause shifts relative to
traditional patterns to which human systems are aligned. These shifts can also alter the
intensity distribution (e.g. wet areas getting wetter and dry areas drier (Held and Soden
2006)), potentially leading to more extremes either directly (Portmann et al. 2009) or indirectly
via teleconnections (Kenyon and Hegerl 2010), which would again lead to damages even in
cases where changes in mean precipitation could be beneficial. Hence I assign damages to both
scattering aerosols and absorbing BC even though the sign of their impact is sometimes
opposite. It is difficult to estimate precisely what portion of the climate-related damages is due
to precipitation changes. Even for a particular impact such as human health, temperature and
precipitation both play important roles by influencing malnutrition, vector borne diseases, etc.
(Campbell-Lendrum and Woodruff 2007). I attribute 50 % of the climate-related damages to
precipitation changes, and increase these by a factor of 4.2 for aerosols based on the mean ratio
in prior modeling (see ESM). The portion of the global climate response attributable to carbon-
cycle feedbacks is excluded. I assume this aerosol enhancement has an uncertainty of ±50 % of
its mean value.
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2.4 Composition-health valuation

Premature deaths attributable to chronic PM2.5 (particulate matter with a diameter less than
2.5 μm) exposure are calculated using the total current outdoor PM2.5 impact on human health
(3.2 million premature deaths annually (Lim et al. 2012)) and total current emissions, with the
fractional contribution of each individual aerosol type given by the fractional contribution of
each to population-weighted annual average surface PM2.5 calculated on a worldwide 0.5×
0.5° grid (UNEP 2011; Shindell et al. 2012a). Valuation uses the current global mean
population- and PM2.5 exposure-weighted VSL of $3.05 million, calculated using the same
model and methods as for the climate-health VSL (UNEP 2011) (see ESM).

Impacts of methane on human health (via ozone) are drawn from results of two global
composition-climate models (Shindell et al. 2012a), whereas impacts of CO and NOx on health
via ozone are drawn from one of those models (GISS). Impacts use population- and exposure-
weighted country-specific VSL for the ozone-health impact calculated for each pollutant. I
account for the time-dependence of the ozone response to methane and CO emissions, and thus
these are affected by the discount rate and projected GDP and baseline mortality, which are the
same as for climate-health impacts.

The uncertainty is ±80 % for the composition-health impacts based on uncertainty in the
epidemiological concentration-response functions and differences in the modeled concentra-
tion response to emissions changes (UNEP 2011; Anenberg et al., 2012).

2.5 Composition-agriculture valuation

Impacts of methane on agriculture via the induced change in surface ozone are also included.
These are incorporated based upon prior work using (1) the surface ozone response to methane
emissions changes from two global composition-climate models, (2) the impact of ozone on
yields of four staple crops, wheat, maize, soy and rice, based on the methodology of Van
Dingenen et al. (2009), and (3) their valuation using world market prices, as described in
Shindell et al. (2012a).

2.6 Uncertainty analysis

The calculations include the specified uncertainties associated with 11 factors, as discussed
throughout this section: RF, climate sensitivity, carbon-cycle response to non-CO2 forcing,
damage function, regionally enhanced precipitation response to aerosols, climate-health,
composition-health, baseline mortality projections, effects of CO2 fertilization on agriculture/
malnutrition, GDP projections, and reference temperature projections. I perform Monte Carlo
calculations sampling each source of uncertainty randomly within its distribution. I present the
median and the 5 and 95% confidence levels from a 40,000-member sample (the median is lower
than the mean owing primarily to the asymmetric distributions of climate sensitivity and GDP
growth in real terms). Uncertainty attributable to individual factors is presented in the ESM.

3 Results

Valuation of climate damages is, unsurprisingly, highly sensitive to discounting, reflecting the
relative value of money over time, and estimated climate-health impacts. The median basic
climate damages attributable to CO2 (equivalent to the traditional SCC) are 10–67 $/ton in my
calculations including conventional climate-health impacts from IAM estimates (Table 2).
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These values are consistent with those in many prior studies (e.g. USG 2013; NRC 2010).
Median SCAR values for CO2 increase to 27–150 $/ton adding the additional climate-health
impacts, the valuation of which is larger than the total traditional SCC valuation (Table 2).

SCAR valuation for long-lived N2O is much larger than for CO2 due to its far greater
radiative efficiency, but shows broadly similar sensitivity to the choice of discount rate
(Table 2). In contrast, valuation for the shorter-lived pollutants is much less sensitive to
discounting. This is especially true for aerosol-related species other than BC (SO2, OC,
NOx, and NH3) because their composition-health impacts, which are unaffected by
discounting, dominate their valuation even though the regional hydrologic cycle response
makes the net climate damages of even cooling aerosols positive (see also ESM). The use of a
DDR produces values between the constant 3 and 1.4 % cases with the specified starting rate
and decline used here (Table 2). Regardless of the discounting, the SCAR valuation per ton is
much larger for methane and the five aerosol-related species than for CO2, with a ton of
methane causing ~30–100 times more damage than a ton of CO2 and a ton of the aerosols

Table 2 Valuation of 2010 emissions (damages per ton in $2007 US)

Valuation; discount
rate

CO2 CH4 N2O HFC-134a BC SO2 CO OC NOx NH3

Climatea; 5 % 10 490 2800 19,000 13,000 −900 42 −1800 −56 −240
Climatea; 3 % 32 910 9200 36,000 20,000 −1400 90 −2800 −220 −380
Climatea; 1.4 % 67 1400 19,000 56,000 30,000 −2100 160 −4200 −400 −560
Regional climate,

aerosols; 5 %
0 0 0 0 19,000 3000 0 6100 90 820

Regional climate,
aerosols; 3 %

0 0 0 0 26,000 4400 0 8700 350 1200

Regional climate,
aerosols; 1.4 %

0 0 0 0 34,000 5900 0 12,000 600 1600

Additional climate-
healthb; 5 %

16 1600 8300 62,000 110,000 4500 140 9000 7 1200

Additional climate-
healthb; 3 %

45 2800 24,000 110,000 150,000 5700 260 11,000 30 1500

Additional climate-
healthb; 1.4 %

87 4000 47,000 160,000 190,000 6900 430 14,000 50 1900

Composition-health;
5 %

0 550 0 0 62,000 33,000 200 51,000 67,000 22,000

Composition-health;
3 %

0 670 0 0 62,000 33,000 240 51,000 67,000 22,000

Composition-health;
1.4 %

0 740 0 0 62,000 33,000 250 51,000 67,000 22,000

Median total; 5 % 27 2700 12,000 85,000 210,000 40,000 410 64,000 67,000 24,000

Median total; 3 % 84 4600 37,000 160,000 270,000 42,000 630 68,000 67,000 25,000

Median total; 1.4 % 150 6000 62,000 210,000 310,000 43,000 820 71,000 67,000 25,000

Median total; declining
rate

110 4700 47,000 160,000 280,000 42,000 730 69,000 67,000 25,000

Notes: Composition-agriculture impacts via ozone are included in the sum for methane, valued at $22, $27 and
$30 per ton for 5, 3 and 1.4 % discounting, respectively. Uncertainties are presented in Table S4
a This basic climate valuation includes IAM-based climate-health impacts
b This valuation of additional climate-health impacts is based on WHO analyses as described in the section 2.2
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causing up to ~7800 times more damage. The larger valuation on a per ton basis stems
primarily from the greater radiative efficiency per molecule of non-CO2 compounds relative to
CO2 and the additional composition-health impacts.

Uncertainties in the valuation are often systematic across pollutants, so do not affect their
relative importance. For example, the bulk of the uncertainty in damages associated with emissions
of SO2, OC, NOx, and NH3 comes from the 80 % range in the effect of particulate matter or ozone
on human health (see ESM). Similarly, primary contributors to uncertainties in the valuation of the
other emissions are climate sensitivity, climate-health impacts, and projected GDP, which are
systematic across those pollutants and hence their relative importance is robust. Uncertainty in the
regional aerosol impacts is obviously not systematic across all pollutants, but has minimal
influence. Uncertainty in GDP, which is the most important factor for CO2 and N2O, largely
reflects society’s willingness to pay to avoid impacts in the future (wealthier people will pay more)
rather than uncertainties in the impacts themselves as for other factors. Note that attribution of
uncertainty to individual factors is imperfect in a coupled, non-linear system (see ESM).

Another useful perspective can be gained by incorporating the relative magnitude of
emissions of each compound as these vary enormously. I present the valuation of 1 % of
current global anthropogenic emissions (2010 values from Thomson et al. (2011), including
open biomass burning emissions (Lamarque et al. 2010)), a level small enough that it is a
marginal change (Fig. 1). With a high (5 %) discounting rate, placing a greater weight on near-
term impacts, the valuations of 1 % of current emissions of products of incomplete combustion
(PIC; OC, BC and CO) that are usually co-emitted or SO2 are much larger than the valuation of
any other pollutants. Carbon dioxide is valued at about 25 % of the value of SO2, and 20 % of
the sum of PIC. Towards the other end of the discounting rate spectrum, a rate of 1.4 % leads
to larger impacts at long timescales, enhancing the valuation of CO2 more than five-fold and
increasing the valuation of methane, BC and CO by 150 to 230 % while having little impact on
reflective aerosols or NOx. Valuation of PIC is the largest with 1.4 % discounting, followed by
CO2, SO2, NOx and methane (Fig. 1). Valuation of HFC-134a is always relatively small
despite it having the highest per ton valuation (see ESM) due to the small amount currently
emitted. Note that open biomass burning emissions, especially those near populated areas
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which have the largest effects on human health, come from fires largely started or managed by
people, but are not exclusively anthropogenic.

Of course the relative ease of reducing emissions is not equivalent across pollutants or
sources. The SCAR metric provides a simple way to compare the impacts of aggregate
reductions once achievable values have been estimated, however. For example, the valuation
of reducing products of incomplete combustion by only ~2 % would be comparable to that of
reducing CO2 by 10 % with a near-term focus (5 % discounting), while reductions would have
to be ~7 % to be as valuable as CO2 reductions of 10 % using a long-term perspective (1.4 %
discounting). Similarly, reducing CH4 emissions by ~12 % provides as much benefit as
reducing CO2 emissions by 10 % with a near-term perspective, while reductions need to be
30 % with a long-term view.

4 Illustrative applications

The SCAR can be used to explore the societal impacts of emissions attributable to particular
activities and locations. For example, valuation of environmental damages due to US emis-
sions from electricity generation, obtained by multiplying the SCAR by emissions attributed to
those sectors (US EPA 2012, 2013a, b), are $330–970 billion at 3 % discounting (Table S3).
Much of the uncertainty is systematic, so despite large ranges, differences can be significant
(e.g. coal-related damages are $410 (−180/+240; 5–95 % CI) billion greater than gas-related
damages at 3 % discounting). Additional damages due to the human health impacts of mercury
emissions are relatively small compared to those associated with other emissions (Table S3).
As the SCAR is designed to evaluate marginal emissions changes, these values for the entire
sector are illustrative only, and presented primarily to facilitate comparison with prior sectoral
valuation (see ESM). These calculations use the global SCAR metric, and US-specific
valuations are ~10–20 % higher (see ESM).

Within the transportation sector, the environmental damages per unit of fuel consumption
are $3.80 (−1.80/+2.10) per gallon of gasoline using a 3 % discount rate, far larger than the
current federal tax of $0.184 per gallon and more than 7x greater than the typical combined
local, state and federal gasoline tax (additional negative externalities associated with gasoline
use should be part of an optimal fuel tax). Damages are substantially larger for diesel fuel,
$4.80 (−3.10/+3.50) per gallon, owing to the greater BC emissions from diesel engines. US-
specific valuations are 20–21 % higher, so again fairly consistent with the global results.

The flexibility of the SCAR, as a general emission metric, readily allows comparison of the
environmental damages associated with different fuel types or technology choices as well. I
present two examples here, for power generation and vehicles. Mean US damages related to
atmospheric releases for power generation are calculated on a per kWh basis by multiplying
the SCAR by the emissions associated with a given fuel type (US EPA 2012, 2013a, b), then
dividing by the kWh generated using that fuel type. Environmental damages from the US
average coal-fired power plant are 24 (−10/+15) ¢ per kWh with 3 % discounting (median
values are 19 and 30 ¢ per kWh with 5 and 1.4 % discounting, respectively). Comparable
values for the average gas-fired plant are 8.4 (−4.4/+10.0) ¢ per kWh (4.1 and 12 ¢ per kWh).
Total damages from coal are greater than from gas regardless of the discount rate, as the
uncertainties are partially systematic and so differences are significant despite the large ranges
(e.g. damages from coal are 16 (−8/+8) ¢ per kWh greater than from gas for 3 % discounting).
There is substantial variation across coal-fired power plants, however, especially in terms of
air-quality related emissions, with damages typically greater for older plants and less for newer
ones. A coal plant with air-quality related emissions at the 5th lowest percentile (about 5 % of
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the average) would have damages close to those for the mean gas plant (~8¢ per kWh for
either; 3 % discounting) while one at the 95th percentile (emissions about 360 % of the
average) would have far greater damages (~62¢ per kWh; 3 % discounting) based on
emissions in NRC2010. Variation across gas plants is less, though still substantial, with the
best combined-cycle plants having nearly twice the efficiency (and hence roughly half the
damages) of typical steam or centralized turbine plants, and lower damages even than the
cleanest coal-fired plants. Damages from mercury emissions are less than 1¢ per kWh, so are
not included here. Damages using US-specific valuation increase by ~20 % for coal, but by
only 4 % for gas as climate damages, which are independent of emission location, play a larger
role in the latter.

Similarly, one can easily compute how much methane releases would have to be from the
gas sub-sector (e.g. due to leakage) to produce damages as large as those from coal. Using a
discount rate of 1.4 %, fugitive (leaked) methane emissions from natural gas systems would
have to be 6.6 % for the average gas-fired power plant to produce damages as large as the
average coal-fired power plant on a per kWh basis, while with a high discount rate of 5 %
emissions would need to be 11 %. The value increases with the near-term focus inherent in the
high discount rate due to the very large damages associated with SO2 and NOx emissions. In
comparison with the aforementioned coal plant at the 5th percentile of current air quality
emissions, the leak rate for the natural gas sector has to be only 1.9 %, 1.6 % or 1.1 % for 1.4, 3
and 5 % discounting, respectively, to match the damages from coal. Hence in this latter
comparison, which primarily compares the effect of the CO2 and CH4 emitted by these two
sectors (and hence the leak rate threshold decreases with a nearer-term perspective), even very
small leak rates would make the mean natural gas plant as environmentally damaging as coal.
Current estimates of methane leakage vary widely (see ESM), and hence these tradeoffs merit
further consideration as better data becomes available. Note that comparison of marginal costs
does not include all the factors that would be involved in a more complete transition between
fuels within the energy sector.

The total levelized energy generation costs for new capacity in a recent US government
estimate (Energy Information Administration 2014) are about equal for conventional coal and
nuclear or renewables, with conventional combined cycle gas costing substantially less (Fig. 2).
Including atmospheric environmental damages, however, coal-fired power is far more expen-
sive than other sources, while gas becomes more expensive than nuclear or renewables (Fig. 2;
contrast is slightly larger using US-specific values; Figure S5). The SCAR can also be used to
assess variations between nations. For example, the environmental damages for the mean coal-
fired power plant in China are valued at 53 (−24/+29) ¢ per kWh with 3 % discounting (46 and
61 ¢ per kWh with 5 and 1.4 % discounting, respectively), ~200–250%more than the mean for
US coal-fired power plants due to the greater levels of non-CO2 pollutants.

For vehicles, emissions from a typical midsize US gasoline powered vehicle (26 miles
gallon−1, 12,000 miles yr−1) lead to environmental damages valued at $1700 yr−1 using the
SCAR with 3 % discounting. In comparison, analogous damages associated with the gener-
ation of electricity to power a midsize electric vehicle (EV; 2013 Nissan Leaf, 0.29 kWhmile−1

(fueleconomy.gov)) are $840 yr−1 for electricity from coal, $290 yr−1 for electricity from
natural gas and miniscule for nuclear or renewables (again the contrast is slightly larger using
US-specific valuation; see ESM). Hence environmental damages are reduced substantially
even if an EV is powered from coal-fired electricity, although they are much lower for other
electricity sources (conclusions are similar using 5 or 1.4 % discounting). Clearly, both a
switch to less polluting electricity combined with vehicle electrification would be needed to
reduce the majority of environmental damages associated with emissions from transportation
via electrification.
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5 Discussion and conclusions

Society’s will to reduce emissions is influenced by costs as well as benefits. Prior analyses
have suggested the potential to achieve large reductions in emissions of all the compounds
examined here at relatively low cost (Enkvist et al. 2007; Rypdal et al. 2009; Shindell et al.
2012a; UNEP 2011). Including the larger SCAR valuation would make the economics even
more favorable from the perspective of a social planner considering broad societal costs.
Market barriers are important, however, and the common ‘split incentives’ mismatch between
those incurring costs and those accruing benefits can be particularly important for planet-wide
benefits such as reduced climate damages (see also ESM).

Furthermore, there are multiple benefits for which valuation methodologies are not as
thoroughly developed and hence which are not taken into account in this analysis. For
example, neither chronic physical or mental health problems nor effects of indoor
household air pollution were included (see ESM). Beyond health, additional impacts of
emissions such as ocean acidification, biodiversity loss, ecosystem impacts of nitrogen
deposition, and changes in visibility are omitted, suggesting that these damages are conserva-
tive and leaving ample opportunities to further improve the comprehensiveness of social cost
metrics. Societal decisions will also be influenced by effects other than atmospheric release,
such as impacts on fresh water, waste products (e.g. coal ash ponds, spent nuclear fuel) and
national or energy security (e.g. reliance on imported fossil fuels, nuclear proliferation), which
are not readily incorporated into an emission metric.

Although much further work is required to fully characterize benefits and compare with
costs, this extension of SCC-type analyses to encompass a broader range of both pollutants and
impacts facilitates examination of how society values various impacts occurring over different
timescales. When near-term impacts are deemed most important, the results indicate that
society can reap the greatest benefits by targeting emissions reductions at PIC and sulfur
dioxide. This reflects the large impact of PM2.5 on near-term human health via air quality and
the substantial impact of BC on climate. If instead longer-term impacts are given more weight,
as reflected in use of a low discounting rate that arguably better captures multi-generational
impacts, reductions of carbon dioxide provide comparable valuation to those of PIC and SO2.

The large impacts of aerosols and methane, especially at high discount rates, reflect the high
immediate values placed upon reduced mortality risk by society. They appear to capture the
reality that near-term health impacts seem to typically be considered more important to citizens
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than longer-term impacts of any sort, consistent with the vastly greater sums spent on medical
care and research than on long-term environmental protection, and within the realm of air
quality consistent with an emphasis on SO2 and NOx reductions. Such a strategy has been
fairly well aligned with the optimal path suggested by this analysis given a preference for
avoiding near-term impacts. However, even with such a preference, greater efforts to reduce
PIC and methane emissions appear warranted due to their large impacts. To avoid longer-term
damages, society clearly will have to greatly reduce CO2 emissions given their importance in
total emission valuation at low discount rates. Hence these results suggest that irrespective of
time preference, society should pursue a multi-pollutant emissions reduction strategy that
includes multiple greenhouse gases and aerosols in order to obtain maximum socioeconomic
benefits. Many potential actions, such as the examples of using renewable energy for electric-
ity or transport, can simultaneously reduce both. Use of the SCAR metric, as in the illustrative
applications presented here, can help society determine the optimal pathways to achieve such
reductions.
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