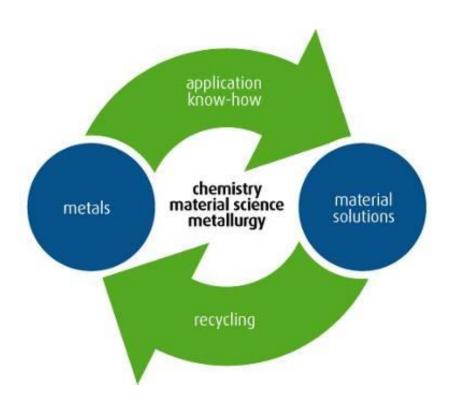
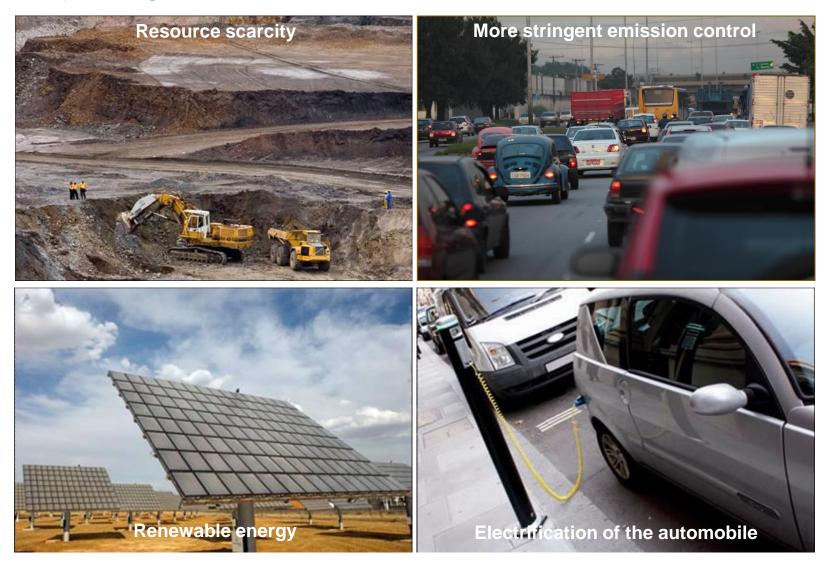


WEEE recycling: key aspects in reducing the carbon footprint and providing access to scarce resources"

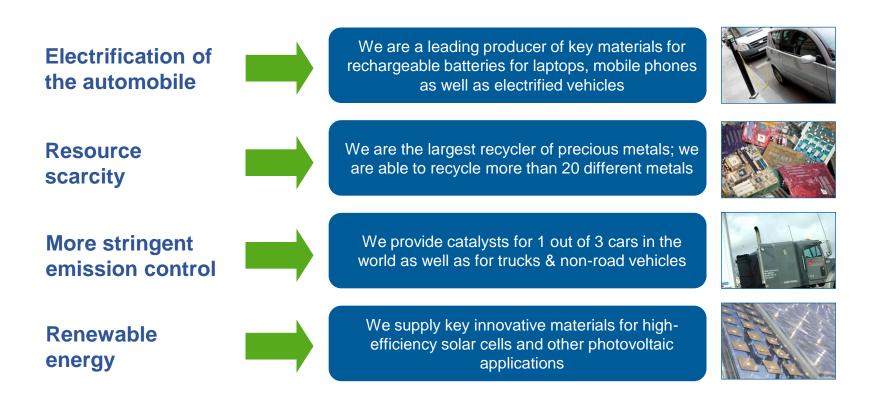
FORO INTECligencia PARA UN MUNDO MEJOR


Umicore Precious Metals Refining

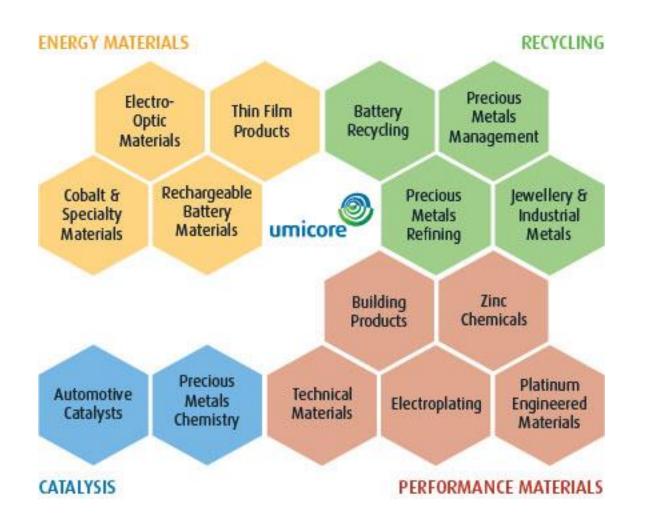
- E-scrap: The recycling chain
- Challenges for Latin America
- Recommendations


Material technology company with focus on clean technologies

Global presence: 14,400 people in 80 industrial sites worldwide



Key megatrends for Umicore



Umicore fit with megatrends

Umicore's structure

Umicore and sustainability

- On January 23rd 2013, Umicore has been ranked as the most sustainable company in the "Global 100 Most Sustainable Corporations in the World" index.
- The index, based on many variables, is published annually since 2005 by Corporate Knights, an independent media and investment research company based in Toronto, Canada.

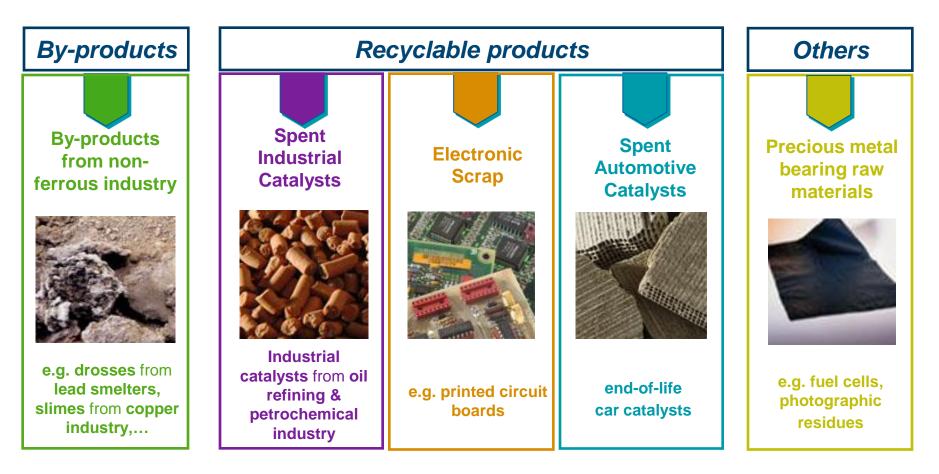
Exploring Umicore Precious Metals Refining

Excellence in recycling

UPMR: the leading precious metals recycler

- unique & innovative technology
- excellent services to an international customer basis
- wide range of complex precious metals bearing materials
- efficient recovery of 17 different metals
- applying world class environmental standards

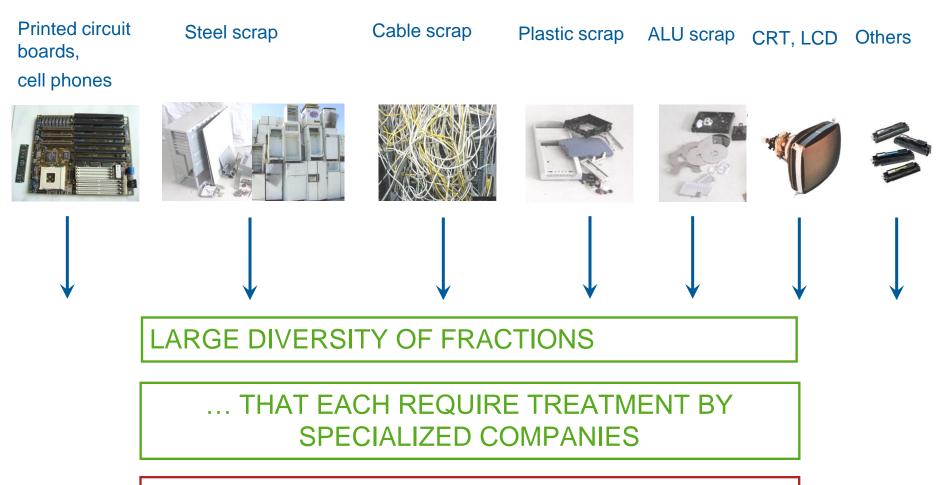
Our core business



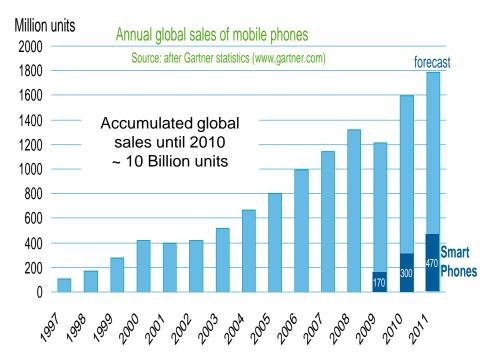
Types of raw materials

E-scrap: The Recycling Chain

E-waste, what are we talking about ?

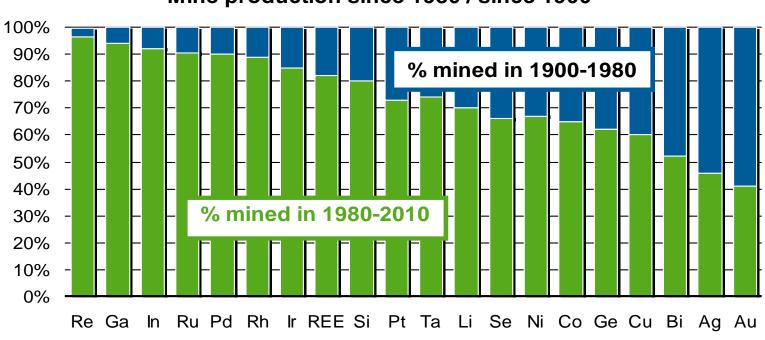


E-waste: something to 'deal' with


E-waste: something to 'deal' with

 \rightarrow IT E-WASTE IS THE MOST HUNTED FOR

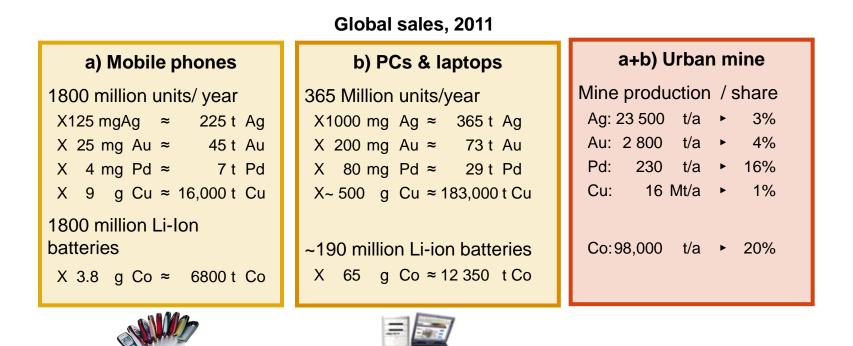
Booming product sales & increasing functionality drive demand for (technology) metals



www.teleco.com.br

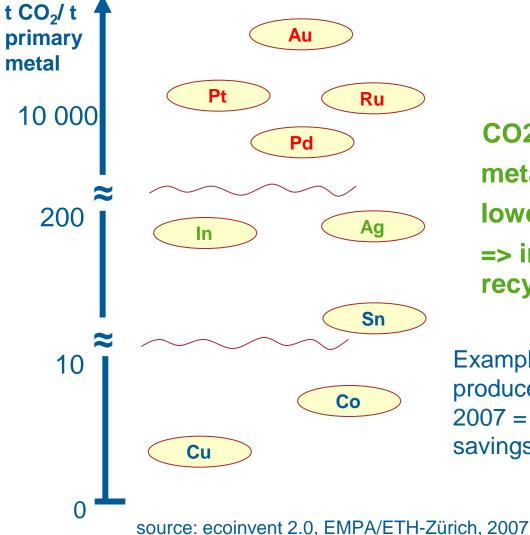
- **1º Brazil** \rightarrow 262 million
- **2º México** \rightarrow 101 million
- **3º Argentina** \rightarrow 59 million
- **4º Colombia** \rightarrow 49 million
- 5º Venezuela → 29 million

Recent boom in demand for most technology metals



Mine production since 1980 / since 1900

REE = Rare Earth Elements


Low loadings per unit, but volume counts Example: Metal use in electronics

Tiny metal content per piece \rightarrow Significant total demand Other electronic devices add even more to these figures

and considering the CO₂ impact of primary metal production is huge ...

CO2 impact of secondary metal production is much lower for majority of metals => incentive to stimulate recycling

Example: 70.000 tons of metals produced by Umicore Hoboken in 2007 = 1 million tons of CO₂ savings vs primary metal production

UPMR \rightarrow maximizing metal extraction from Urban mines

Primary mining

- ~ 5 g/t Au or PGM's in ore
- Low grade, high volume, fixed location

Urban mining

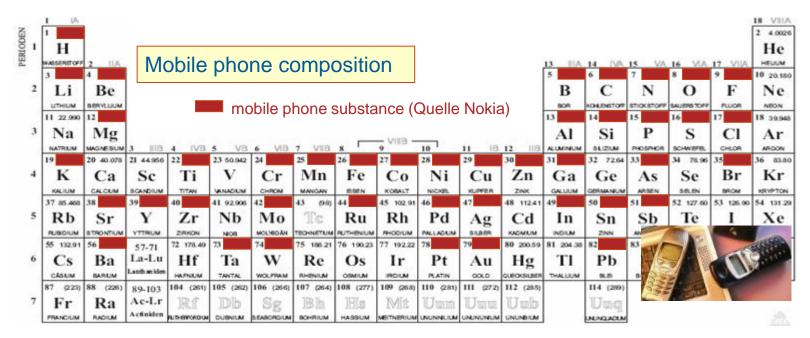
- 200 g/t Au, 80 g/t Pd & Cu, Sn, Sb, ... in PC boards
- 2,000 g/t PGM in automotive catalysts
- High grade, million of units, globally spread

Reducing CO₂ emission significantly

Example:

Umicore Precious Metals Refining, Hoboken/Belgium (UPMR):

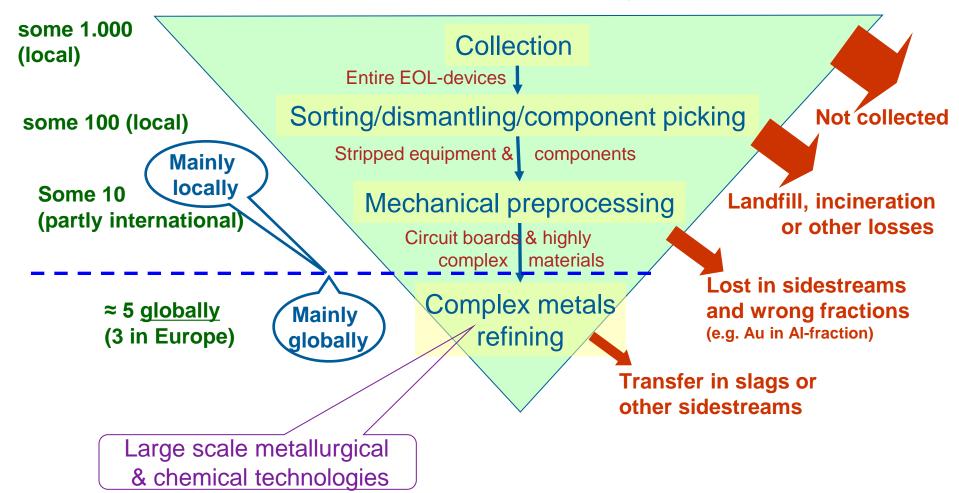
- recovered metals 2007*: 70,000 t
- total CO₂ impact of UPMR in 2007*: 0.27 Mt
- total CO₂ impact primary production**: 1.3 Mt
- ►CO₂ saving potential recycling*: 1.0 Mt


*from treatment of 300,000 t of recyclables & smelter by-products. Output: 1000 t Ag, 30 t Au, 37 t PGM, 65 000 t Cu/Pb/Ni, 3500 t Sn/Se/Te/In/Sb/Bi/As
**if these metals would have come from primary production, calculated with ecoinvent 2.0:

the unavoidable "black box approach" of the UPMR calculation mixes the CO_2 impacts of very low grade materials (e.g. slags, flue dusts) with richer ones from recycling of consumer goods (e.g. circuit boards, catalysts)

▶ for recycling of electronics the CO₂ benefit compared to mining is even higher!

Modern electronics make use of ~ 50% of elements from periodic table => a big consumer of natural resources


- Precious & special metals → "technology metals", crucial for functionality
- Key components: circuit boards, batteries, LCD screens

E-waste: structure of recycling chain

typical numbers of participants (for industrial countries)

Magnitude of losses in materials and value

Recycling chain Example: 10% x 90% x 80% x 95% = 7% *effective recovery rate for e.g. Au, Cu etc. from **EOL**-streams Recycled Dis-Materials Pre-WEEE Collection metals mantling processing recovery reuse Separated components & fractions Handling of final waste

Total efficiency is determined by the weakest step Consider the entire chain & its interdependencies

How does the recycling chain often look like in reality in some countries?

Or a gold recycling efficiency of: 95 % x 50 % x 25 % = 12 %^{*}

backyard recycling ► "low tech"

- High losses, few metals recovered only dramatic environment & health impacts
- Typical for most Asian African countries <u>LATIN AMERICAN COUNTRIES?</u>

* Illustrative figures

Another examples

Low collection

⇒lack of legislation in some Latin American countries & new business models are required

"Deviation" of collected goods ⇒ dubious exports ⇒low quality "recycling"

⇒ "Tracing & Tracking", controls & enforcement, stakeholder responsibility, transparency

Still have some opportunities

15.000 cell phones = 1 ton of cell phones ≈ 250 grams of Au - Illustrative figures

Very important source of materials / metals (Au, Ag, Cu, Pd and others) Pulverized in the market and challenge to collect, sort and recycle.

How should/could the recycling chain look like in some countries?

Or a gold recycling efficiency of: 95 % x 90 % x 95 % = 81 %*

What is needed to achieve this result?

- Maximum & organized collection, with adequate presorting of various types of WEEE
- Focused dismantling (=> training is needed !)
- Best available end-processing technology (=> best environmental performance often goes hand in hand with best recycling performance)
- Tracing & tracking, transparency, controls.
- → SYNERGIE CAN BE ACHIEVED BY RIGHT INTERNATIONAL PARTNERSHIP
- * Illustrative figures

Umicore's e-scrap: complex & precious metals

UPMR is specialized in treating complex fractions with precious metals

Typically

- printed circuit boards
- cell phone handsets
- IT components (chips, CPU, processors)
- metallic pins
- IT connectors

Challenges for Emerging Regions Informal sector: a useful network

- collection experience: existing broad network with door-to-door service, but sometimes informal
- recycling experience: out of livelihood, broad experience in sorting, dismantling & repair
- Good work environment requires moderate investment (training, infrastructure, fair wage.....)

Challenges for Emerging Regions

Informal sector: a useful network

Weaknesses

- Back-yard 'refining' = artisanal burning & leaching:
- fast access to metals,
- low yield recovery (Au < 20% recovery)
- no EHS measurements, no awareness

 Absence of proper 'transparent' end-refining technology (?)

Implementing recycling technologies

Collection / manual sorting & dismantling

- □ HIGH PRIORITY
- □ Low investment cost
- **Use the strength of available workforce**
 - Involve informal sector & create skilled labour

Mechanical pre-processing (shredding/seperation)

- □ Useful for high volumes of e-waste without or with low precious metal content (small domestic appliances, white goods, engines, ...)
- Moderate investment cost

<u>Smelting/refining (resource recovery)</u>

- **Only useful if formal collection is organized**
- High investment cost
- Big scale operations required to achieve high recovery yield & to make use of economy of scale

Recommendations

- Assure organized collection first before thinking of high tech refining technology

 Proper collection by <u>actively involving the existing unofficial</u> <u>sector</u> instead of excluding them. Make use of the available strengths among the informal recyclers

 Create/implement legislative framework that promotes/facilitates formal collection & recycling and that discourages/hinders informal recycling (and not the other way around)

- If no collection \rightarrow no recycling

Recommendations

- <u>Maximize</u> the use of <u>manual dismantling</u> and minimize mechanical pre-processing as far as the *precious metals bearing ewaste* is concerned

- The more complex/interlinked the material, the less selective are mechanical separation processes and the higher are losses of precious metals by co-segregation

Recommendations

- End-processing (physical materials recovery) is crucial for final value generation & toxic control.

- Recycling trace elements from complex products needs "hightech", large scale processes which cannot be replicated in any country.

- Use *synergy* of locally available workforce for dismantling/preprocessing and internationally available technology for materials recovery: <u>economy of scale & international division of labour</u>

Conclusions

- Legislation extremely important;
- Motivate collection/define targets;
- More environmental awareness;
- More transparency/control of flows;
- Sector Informal to FORMAL;
- Reuse as part of the process;
- Ensure quality recycling (complex materials);
- Recycling needs a chain, not a single process;
- If no collection \rightarrow no recycling

Thanks for your attention

Umicore Brasil Ltda – Ricardo Rodrigues - Ricardo rodrigues@am.umicore.com