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ABSTRACT The malaria parasite Plasmodium falciparum contains a nonphotosynthetic plastid organelle that possesses plant-
like metabolic pathways. Plants use the plastidial isoprenoid biosynthesis pathway to produce volatile odorants, known as ter-
penes. In this work, we describe the volatile chemical profile of cultured malaria parasites. Among the identified compounds are
several plant-like terpenes and terpene derivatives, including known mosquito attractants. We establish the molecular identity
of the odorant receptors of the malaria mosquito vector Anopheles gambiae, which responds to these compounds. The malaria
parasite produces volatile signals that are recognized by mosquitoes and may thereby mediate host attraction and facilitate
transmission.

IMPORTANCE Malaria is a key global health concern. Mosquitoes that transmit malaria are more attracted to malaria parasite-
infected mammalian hosts. These studies aimed to understand the chemical signals produced by malaria parasites; such an un-
derstanding may lead to new transmission-blocking strategies or noninvasive malaria diagnostics.
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Malaria remains an enormous burden to human health world-
wide. There are over 250 million cases of malaria each year,

and nearly 1 million deaths (1). A single protozoan species, Plas-
modium falciparum, is responsible for the most severe and deadly
cases of this disease. Widespread and emerging drug resistance has
contributed to a resurgence of malaria and to increased interna-
tional attention to malaria control (2, 3). Because P. falciparum is
transmitted through the bite of mosquitoes of the genus Anophe-
les, mosquito vector management has remained a key component
of most malaria reduction efforts (4).

Female mosquitoes choose their mammalian hosts based in
part on complex chemical cues. Some of these signals, such as
carbon dioxide, have been well characterized on a molecular level.
For example, carbon dioxide is not only a potent mosquito stim-
ulant but also augments mosquito feeding behaviors and modu-
lates attraction to other human body odors (5). However, Anoph-
eles gambiae strains that lack functional CO2 receptors are still
capable of locating human hosts (6), indicating that additional
chemical signals also drive host preference. Several recent studies
have demonstrated that Plasmodium-infected hosts, including
humans and rodents, are more attractive to Anopheles spp. (7–9).
Analysis of volatile organic compounds emitted by Plasmodium-
infected mice revealed an overall increase in volatiles, including
host-derived compounds that enhance mosquito attraction (9).

While female mosquitoes depend on protein-rich blood meals
for egg maturation, both male and female mosquitoes are also
attracted to and feed from plants. Plant nectar is an important,
carbohydrate-rich nutrient source that provides essential energy

for flight and, for some mosquito species, overwintering (10, 11).
This phytoattraction has been successfully harnessed by malaria
control efforts through “attractive nectar baiting” strategies, in
which mosquitoes are lured to sugar-water blends spiked with
plant volatiles and insecticides (12, 13). Suspected preferred host
plants for Anopheles gambiae include Asteracaeae spp. and Ricinus
communis (14). Analysis of purified odorants from these plants
has revealed enrichment of volatile compounds known as ter-
penes, including 10-carbon monoterpenes such as pinene and li-
monene. At low concentrations, these purified terpenes directly
mediate attraction of Anopheles spp. (14).

Terpenes are low-vapor-pressure hydrocarbons that belong to
a class of compounds known as isoprenoids. Over 200,000 iso-
prenoids have been described, and this large group of biomol-
ecules exhibits dramatic structural and functional diversity (15).
All isoprenoids are produced downstream of two common
5-carbon precursors, isopentenyl pyrophosphate (IPP) and dim-
ethylallyl pyrophosphate (DMAPP). Animals and fungi generate
isoprenoids through a biosynthetic route that proceeds through
mevalonate. In contrast, eubacteria and plastid-containing eu-
karyotes use an alternate metabolic route, the nonmevalonate or
methylerythritol phosphate (MEP) pathway. Plants utilize both
the mevalonate and MEP pathways; however, it is the chloroplast-
localized MEP pathway that is used for biosynthesis of the terpene
volatiles that constitute their characteristic flavors and fragrances
(16). For many species of insects, not just mosquitoes, chemod-
etection of plant-derived terpenes directly modulates herbivory
and pollination behaviors (reviewed in reference 17).
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The malaria parasite Plasmodium falciparum contains an un-
usual plastid organelle called the apicoplast, which is of a similar
endosymbiotic evolutionary origin as plant chloroplasts (18).
While the apicoplast retains several plant-like metabolic path-
ways, evidence suggests that the MEP pathway may be the only
essential function of this organelle during intraerythrocytic devel-
opment (19–21). In this work, we examined the possibility that,
like plants, Plasmodium falciparum parasites might utilize the
MEP pathway to produce terpenes. We determined the volatile
chemical composition of headspace gas from cultured P. falci-
parum and thus identified parasite-produced terpene molecules
that represent known mosquito phytoattractants. In addition, we
established the molecular identity of the Anopheles gambiae odor-
ant receptors that respond to these plant-like terpenes. Together,
our studies provide evidence that malaria parasites produce spe-
cific volatile compounds, and anopheline mosquitoes that trans-
mit malaria contain the cellular machinery necessary for detecting
and responding to these compounds. Thus, plant-like terpenes
produced by P. falciparum may represent semiochemicals for me-
diating anopheline mammalian host preference.

RESULTS
Plant-like volatile compounds in Plasmodium falciparum head-
space gas. We hypothesized that malaria parasites might produce
volatile organic compounds, including terpenes. We therefore
evaluated the chemical composition of the headspace gas above
asynchronous P. falciparum parasites cultured in human red
blood cells (RBCs). Because previous studies of volatile emissions
from Plasmodium berghei-infected mice (average blood volume, 2
to 4 ml) (9) or low-volume P. falciparum cultures (22) did not
detect malaria parasite-specific volatiles, we utilized large-volume
cultures (200 ml) to increase the likelihood of detecting small
quantities of Plasmodium-produced compounds. In addition, be-
cause terpenes are present at low levels in human serum (23), we
utilized medium supplemented with a lyophilized serum substi-
tute (Albumax; Invitrogen) which does not contain detectable ter-
penes. For headspace sampling, we employed solid-phase micro-
extraction (SPME) fibers, which selectively bind and concentrate
nonpolar organic compounds, as is typically performed to evalu-
ate plant-derived volatiles (reviewed in reference 24).

Fibers were exposed to a controlled atmosphere conditioned
by P. falciparum for 48 h and then were desorbed and analyzed via
electron impact (EI) gas chromatography-mass spectrometry
(GC-MS). As is typical of complex volatile samples, component
peaks overlapped and were not well resolved by visual inspection
(see Fig. S1 in the supplemental material for representative traces).
For this reason, resulting chromatograms were deconvoluted to
isolate overlapping peaks and to extract and annotate component
mass spectra. When distinguishing parasite-specific compounds,
we aimed to identify compounds qualitatively present in parasite-
infected samples compared to controls. Therefore, we conserva-
tively selected compounds present in a majority of independent
biological replicates of parasite-infected RBC samples and ex-
cluded entities also present in either uninfected RBC samples or
blank controls that contained neither RBCs nor medium. Four
compounds specific to parasite-infected samples were thus iden-
tified, including two terpenes (Fig. 1). These identified com-
pounds have previously been identified as typical components of
plant essential oils and/or fungal volatile profiles (25–28).

Terpenes are present in malaria-infected erythrocytes. We
identified several entities that were annotated as terpenes and were
present exclusively in the headspace gas of malaria parasites and
not that of control uninfected erythrocytes or blank samples.
Since terpenes with closely related chemical structures give rise to
similar mass spectra, variability in compound annotation is typi-
cal and expected. The dominant malaria parasite-specific terpenes
were annotated as a 15-carbon sesquiterpene (4,5,9,10-dehydro-
isolongifolene) and its close derivative (8,9-dehydro-9-formyl cy-
cloisolongifolene) (Fig. 2; see also Fig. S2 in the supplemental
material). No commercial standards or known synthesis routes

FIG 1 Plasmodium-specific volatile organic compounds. Compounds anno-
tated in three or more P. falciparum-infected SPME sampling replicates (total
n � 5) and not in uninfected red blood cell samples (n � 3) or blank controls
(n � 6). For each compound, the average retention time (RT) and the range of
match factors are indicated. Match factors (MF, 0 to 999) describe how well a
sample spectrum agrees with the database spectrum. Values of �650 indicate
close identity.

FIG 2 4,5,9,10-Dehydro-isolongifolene is present in the headspace gas of
Plasmodium-infected RBCs. (Top) Total ion chromatogram (TIC) of SPME
fibers conditioned with headspace gas from P. falciparum-infected human
RBCs. Arrow, retention time of 13.101 min (typical of 4,5,9,10-dehydro-
isolongifolene). (Bottom) TIC of SPME fibers conditioned with headspace gas
from uninfected human RBCs.
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have been described for either compound; however, the structural
annotations are supported by consistent database match factors,
from 654 to 774.

In addition, each malaria parasite-infected sample contained at
least one 10-carbon monoterpene. Monoterpene annotations var-
ied between samples but included the structurally related com-
pounds limonene and pinanediol (an �-pinene derivative) (see
Fig. S3 in the supplemental material). To confirm the identity of
these monoterpenes, we extracted nonpolar organic compounds
from cultured P. falciparum and performed GC-MS analysis.
P. falciparum-infected cultures, but not uninfected RBC or blank
controls, contained a single peak suggestive of a monoterpene
with a retention time of 2.39 min, identical to that of an �-pinene
(monoterpene) standard (Fig. 3). Comparison of the mass spectra
of the observed parasite-specific peak with that of a purified stan-
dard established that the parasite-specific compound is �-pinene
(Fig. 3E), a terpene compound previously shown to be produced
by Anopheles-preferred plant species and attractive to A. gambiae
(14).

Terpenes are produced by de novo isoprenoid biosynthesis
in malaria parasites. To evaluate whether terpenes in malaria
parasite-infected samples were produced de novo by the parasite,
we utilized fosmidomycin, a phosphonic acid antibiotic that in-
hibits the first dedicated enzyme of the MEP pathway, deoxyxylu-
lose phosphate reductoisomerase (19). Previous metabolic profil-
ing of fosmidomycin-treated parasites has established that
fosmidomycin reduces concentrations of isoprenoid precursors in
P. falciparum (29). Upon fosmidomycin treatment of cultured
P. falciparum, pinene peak abundance decreased dramatically
(Fig. 3D). Proteomic studies of mature RBCs have indicated that
these cells do not possess the enzymatic machinery to produce the
isoprenoid precursors required for terpene synthesis (30, 31). In
addition, RBCs do not appear to contain substantial stores of IPP,
since malaria parasites that cannot produce IPP themselves are
unable to survive (21, 29). Together, this evidence strongly sup-
ports that the monoterpenes emitted by Plasmodium-infected
RBCs arise from the MEP pathway of the malaria parasite.

Anopheles odorant receptors respond to malaria parasite-
produced terpenes. P. falciparum is transmitted person to person
through the bite of anopheline mosquitoes. To locate plant and
mammalian nutrient sources, A. gambiae detects volatile com-
pounds via signals through ligand-gated voltage channels known
as odorant receptors (AgORs) (32). Electrophysiological and be-
havioral studies have indicated that A. gambiae detects and is at-
tracted to plant volatiles. While high concentrations of terpenes
often repel mosquitoes, pinene and limonene at low concentra-
tions directly attract A. gambiae and are the dominant volatile
organic compounds found in the extracts of mosquito-preferred
plant species (14).

To determine the biochemical mechanism by which A. gam-
biae detects plant- and malaria parasite-produced terpenes, we
assayed a panel of mosquito odorant receptors (AgORs) for
pinene and/or limonene ligand-activated electrical activity. Using
the Drosophila melanogaster “empty neuron” in vivo expression
system (33, 34), we found that AgOR75 was dramatically stimu-
lated by (�)-limonene, while AgORs 21 and 50 were substantially
stimulated by pinene (Fig. 4; see also Fig. S4 in the supplemental
material). These odorant receptors are differentially expressed in
Anopheles chemosensory tissues. Specifically, AgORs 21 and 50 are
highly expressed in both male and female antennae (35). These

studies confirmed that the primary African malaria vector mos-
quito can distinguish monoterpenes produced by P. falciparum. In
addition, our studies establish the molecular identity of the
monoterpene-specific odorant receptors of A. gambiae.

DISCUSSION

Our studies indicated that Plasmodium falciparum malaria para-
sites produce a repertoire of plant-like volatile compounds. These
compounds may represent interspecies chemical signals, or
semiophores, that modulate the attraction of vector mosquitoes to
hosts. Among the parasite-specific compounds we identified, ter-
penes are bioavailable molecules that readily pass through mem-
branes and partition into alveolar gas in the lung. Terpenes, likely

FIG 3 Pinene is produced in malaria parasites by de novo isoprenoid biosyn-
thesis. (A to D) Extracted ion chromatograms (EIC) of the total ion chromato-
grams (TIC) at m/z 93, the base peak in the ion spectrum of pinene. (A)
�-(�)-Pinene standard (positive control); (B) uninfected RBCs (negative
control); (C) Plasmodium-infected RBCs; (D) Plasmodium-infected RBCs
treated with 5 �M fosmidomycin (inhibitor of parasite isoprenoid biosynthe-
sis). (E) EI mass spectra of the observed pinene peak from P. falciparum RBCs
in panel C (top) compared to the purified �-(�)-pinene standard in panel A
(bottom).
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from dietary sources, have previously been identified in exhaled
breath samples of humans (36). Upon malaria parasite infection,
parasite-produced terpenes are likely to be detected outside in-
fected individuals, since the total number of parasites in a typical
infected human well exceeds the number sampled in culture in
such studies (37, 38).

Previous studies have suggested that P. falciparum infection of
Anopheles spp. mosquitoes may reduce fitness and alter feeding be-
haviors (39–41). Over time, selective pressures might enrich for mos-
quitoes with a decreased tendency to feed from malaria parasite-
infected individuals. Therefore, any chemical signals that increase
attraction of mosquitoes to infected individuals must be difficult to
select against and resistant to evolutionary pressures. This hypothesis
is consistent with the finding that malaria infection increases produc-
tion of typical mammalian host odorants (9). Our studies suggest an
additional strategy by P. falciparum for overcoming selection against
biting infected hosts, in which the malaria parasite compensates by
imitating the volatile components of plants preferred by Anopheles
spp. The parasite thus hijacks a highly selected signaling response that
is necessary for mosquito nectar feeding behavior and survival. Since
Plasmodium infection increases nectar attraction in Anopheles (42),
the parasite appears to facilitate transmission both by generating a
mosquito chemoattractant and by sensitizing the mosquito to detect
this signal. Interruption of parasite-mediated volatile signaling to
mosquitoes will be a potent means of blocking this critical step in the
malaria life cycle.

P. falciparum has well-characterized biosynthetic machinery to
produce isoprenoid building blocks and prenyl diphosphates (43–
45). In other systems, such as plants, terpenes are produced by
terpene synthases, which generate terpenes by catalyzing intramo-
lecular cyclization of prenyl diphosphate substrates (46). This
promiscuous reaction typically produces a variety of chemically
related terpene variants from a single enzyme, a cardinal feature of
this enzyme class (47). Consistent with this product diversity, the
large protein family of terpene synthases (Pfam 01397) exhibits
remarkable sequence diversity. Our studies strongly suggest that
terpenes are produced de novo in P. falciparum, since chemical
inhibition of parasite-specific isoprenoid biosynthesis reduces ter-

pene production. No unambiguous terpene synthase ortholog is
present in P. falciparum, based on domain or phylogenetic analy-
ses, but is likely to be represented among the nearly one-half of the
parasite genes that remain unannotated. The diversity of terpenes
present in P. falciparum-conditioned gas suggests that there is at
least one monoterpene and one sesquiterpene synthase.

Here, we have reported a repertoire of volatile organic com-
pounds that are specific to P. falciparum-infected cultures. These
compounds are not likely to represent all possible malaria parasite-
specific volatiles, because our conservative data filtering necessarily
excluded compounds that are parasite specific but exhibit significant
biological variability. The volatile fingerprint of P. falciparum repre-
sents not only a target for the development of inhibitors that will
interrupt malaria transmission, but also an untapped strategy for ma-
laria diagnostics. The parasite-specific compounds we have identified
may represent volatile biomarkers of malaria infection. Ongoing
studies will establish the presence and identity of these compounds in
human P. falciparum infection.

MATERIALS AND METHODS:
Plasmodium falciparum culture and strains. All P. falciparum strains
were cultured in vitro in human erythrocytes (48) at 2% hematocrit. The
culture conditions were as described previously (29), with the following
modifications: we used a 5% O2–5% CO2–90% N2 atmosphere in RPMI
1640 medium supplemented with 27 mM sodium bicarbonate, 11 mM
glucose, 5 mM HEPES, 1 mM sodium pyruvate, 0.37 mM hypoxanthine,
0.01 mM thymidine, 0.25 mg/ml gentamicin (Goldbio), and 0.5% Albu-
max (Invitrogen). Wild-type strain 3D7 (MRA-102) was obtained from
the Malaria Research and Reference Reagent Resource Center (MR4).
3D7-IG was kindly provided by Daniel Goldberg, Washington University
School of Medicine.

Headspace sampling. Plasmodium falciparum strain 3D7-MR4 was
cultured in a cell bioreactor bag (GE Life Sciences) for 48 h with a volume of
200 ml at 2% hematocrit and 2% parasitemia (infected erythrocytes/total
erythrocytes). The culture was injected into the bag via syringe through a
liquid injection port in a sterile environment. Uninfected samples contained
erythrocytes and medium, and blank controls represented sampling from
empty bags without medium or erythrocytes. The two injection ports with
attached airtight filters were then used to fill the bag with a 5% O2–5% CO2–
90% N2 atmosphere. The biobag was secured to a tilting plate and connected
to 0.63-in. sterile plastic tubing (Cole Parmer) through two injection ports.
The ends of the tubing were connected to Luer pieces, which were secured to
the biobag ports by using Parafilm. Of note, the biobag ports do not contain
Luer locks, but all other pieces of tubing in the system are connected with
interlocking Luer pieces. One piece of tubing was connected directly to a
Bio-Rad Econo pump, and the other was fed through an airtight hole in a
250-ml medium bottle (Kimax). The bottle also contained openings for fiber
insertion and outgoing plastic tubing. This tubing was connected to the other
end of the peristaltic pump, completing the closed loop. A carboxen-
polydimethylsiloxane SPME microfiber (Sigma-Aldrich), inside a manual
holder, was placed through an adaptor into the medium bottle. Parafilm was
used to secure the fiber and fiber holder in place and provide an airtight seal.
Each experiment was performed in a temperature-maintained 37°C room for
optimal malaria parasite growth. Sampling was initiated by opening the
clamps on the two biobag injection ports, initiating peristalsis, and extending
the fiber from inside the holder to its exposed position in the bottle. The fiber
was exposed to the sampling conditions for 48 h. After sampling, the fiber was
resheathed and analyzed by GC-MS as detailed below.

GC-MS analysis of SPME fiber extracts. Samples were analyzed on an
Agilent 7890A gas chromatograph interfaced with an Agilent 5975C mass
spectrometer. The GC column used for the study was an Agilent HP-5MS
column (30 m, 0.25-mm inner diameter [i.d.], 0.25-�m film thickness).
Samples were injected in a splitless mode with injector and transfer line
temperatures set at 300°C. A linear temperature gradient was started with

FIG 4 Anopheles gambiae odorant receptors respond to malaria terpenes.
Anopheles odorant receptors were expressed in the Drosophila empty neuron in
vivo expression system and exposed to (�)-limonene and �-(�)-pinene. (�)-
Limonene specifically activated receptor 75. �-(�)-Pinene activated receptors
21 and 50 (n � 6; error bars indicate standard errors of the means).
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an initial temperature of 60°C, held for 2 min, increased to 300°C at
10°C/min, and held for 1 min. The ion source temperature, electron en-
ergy, and emission current were set at 230°C, 70 eV, and 300 �A, respec-
tively, to obtain EI mass spectra.

Manual analysis of GC-MS data. The raw data were analyzed by using
the automated mass spectral deconvolution and identification system
(AMDIS), which provides an output of the GC trace with a deconvoluted
mass spectrum extracted from each trace. Each mass spectrum represents
a potential compound at a specific point in the trace. Every sample (head-
space gas and parasite extract) yielded an average of 700 mass spectra per
analysis. The structures of the compounds in each GC peak were identi-
fied by database search (NIST Mass Spectrum Library) using AMDIS soft-
ware. Background peaks that represented known biologically irrelevant
contaminants, such as polysiloxane arising from SPME fibers, were ex-
cluded from further analysis, as were compounds that did not possess
consistent, parasite-unique ion spectra at given retention times.

Saponin lysis of P. falciparum cultures. Parasites were freed from
RBCs through lysis with saponin at a final concentration of 0.1% (vol/
vol), followed by centrifugation at 2,500 rpm and resuspension in 4 ml of
phosphate-buffered saline (PBS). Pellets were washed in an additional
1 ml of PBS, followed by centrifugation at 14,000 for 1 min. Dry pellets
were stored at �80°C until analysis.

Organic extraction. Extraction of isolated parasite cells was per-
formed as described for the original Folch procedure (49), with the fol-
lowing modifications. Saponin-lysed parasite pellets were suspended in
1 ml of 2:1 (vol/vol) chloroform-methanol. The suspensions were soni-
cated for 30 s and then iced for 30 s for 3 cycles. Samples were vortexed at
600 rpm for 1 h after sonication. Samples were then centrifuged at
14,000 rpm, and the supernatant was recovered. Three hundred microli-
ters of 0.9% NaCl was added to induce phase separation of the sample.
The organic phase was recovered for analysis. The organic phase was not
evaporated after extraction, in order to avoid loss of volatile compounds.

GC-MS analysis of extracted samples. GC-MS analyses were con-
ducted on a Thermo ISQ 1300 GC-MS system with the Xcalibur operation
system (San Jose, CA, USA). Separation was achieved with a Thermo 30-m
TG SQC column (0.25-mm i.d., 0.25-�m film thickness) at a flow rate of
1 ml/min with He as the carrier gas. The GC temperature was started at 50°C
for 2 min, raised to 150°C at 10°C/min, and then to the final temperature of
300°C at a rate of 20°C/min. The samples were injected in a splitless mode,
and the EI mass spectra were acquired in the mass range of 40 to 450 Da at a
rate of 0.2 s/scan. The injector, transfer line, and ion source temperatures were
set at 240°C, 250°C, and 210°C, respectively.

Single-unit electrophysiological recordings. All experiments were
performed on adult female flies, 5 days after eclosion. Flies were reared at
25°C in an incubator with a 12-h light-dark cycle. “Empty neuron” re-
cordings were from flies of genotype w �halo/�halo Or22a-GAL4/UAS-
AgOrX. The ab3A mutant flies and Or22a-GAL4 and UAS-AgOr trans-
genic lines were described previously (32). Fourteen AgOrs (AgOr11, -18,
-20, -21, -26, -27, -30, -31, -46, -48, -50, -56, -57, and -75), previously
found to respond to terpenes (32), were selected to test their responsive-
ness to additional terpene compounds [�-(�)-pinene, Sigma-Aldrich
catalog no 26870; �-(�)-pinene, no. 80607; �-(�)-pinene, no. 305715;
�-(�)-pinene, no. 402753; R-(�)-limonene, no. 183164; S-(�)-
limonene, no. 218367]. Odorants were diluted in paraffin oil (10�2, vol/
vol), and odor stimuli (50 �l applied to a filter disc) were delivered from a
Pasteur pipette via a 500-ms pulse of air (200 ml/min) into the main air
stream (2,000 ml/min), as described previously (32). Extracellular single-
unit recordings were performed essentially as described elsewhere (32).
Briefly, electrical activity of the olfactory receptor neurons (ORNs) was
recorded extracellularly by placing a sharp electrode filled with Ringer
solution into a sensillum, and the reference electrode filled with the same
Ringer solution was placed in the eye. AC signals (300 to 2,000 Hz) were
recorded on an Iso-DAM amplifier (World Precision Instruments) and
digitized at 5 kHz with an Axoscope 10.2 apparatus (Molecular Devices).
ORN spike responses were quantified offline and averaged from 6 differ-

ent neurons. Baseline spike frequency (calculated from spike activity 1 s
prior to odor stimulus) was subtracted from the result.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://mbio.asm.org/
lookup/suppl/doi:10.1128/mBio.00235-15/-/DCSupplemental.

Figure S1, TIF file, 0.1 MB.
Figure S2, TIF file, 0.1 MB.
Figure S3, TIF file, 0.6 MB.
Figure S4, TIF file, 0.1 MB.

ACKNOWLEDGMENTS

This work was supported by the Children’s Discovery Institute of Washing-
ton University and St. Louis Children’s Hospital (MD-LI-2011-171), NIH
NIAID R01AI103280, a March of Dimes Basil O’Connor Starter Scholar Re-
search Award to A. R. Odom, and the Doris Duke Charitable Foundation.
J. R. Crowley was supported by grants P41RR000954, P60 DK020579, and
P30DK056341. C.-Y. Su and J. R. Carlson were supported by grants from the
NIH. M. Kelly was supported through an HHMI Undergraduate Science
Education Grant and the Amgen Scholars Program. C. Schaber was sup-
ported by a Monsanto Excellence Fund Graduate Fellowship.

We thank Allison Rhodes for technical assistance in annotating enti-
ties from GC-MS traces. We are grateful to Jeffrey Henderson and Daniel
Cuthbertson for critical reading of the manuscript.

For the experiments carried out in Plasmodium falciparum, A. Odom
and M. Kelly conceived and designed the experiments; A. Odom, M. Kelly,
Jan Crowley, F.-F. Hsu, and C. Schaber performed the experiments and
analyzed the data. For the Anopheles gambiae odorant receptor experi-
ments, J. R. Carlson and C.-Y. Su conceived and designed the experi-
ments, C.-Y. Su performed the experiments, and C.-Y. Su and J. R. Carl-
son analyzed the data. M. Kelly, C.-Y. Su, J. R. Carlson, C. Schaber, and A.
Odom wrote the manuscript.

We declare we have no conflicts of interest.

REFERENCES
1. World Health Organization. 2012. WHO malaria report 2012. World

Health Organization, Geneva, Switzerland.
2. Dondorp AM, Fairhurst RM, Slutsker L, MacArthur JR, Guerin PJ,

Wellems TE, Ringwald P, Newman RD, Plowe CV. 2011. The threat of
artemisinin-resistant malaria. N Engl J Med 365:1073–1075. http://
dx.doi.org/10.1056/NEJMp1108322.

3. Fairhurst RM, Nayyar GM, Breman JG, Hallett R, Vennerstrom JL,
Duong S, Ringwald P, Wellems TE, Plowe CV, Dondorp AM. 2012.
Artemisinin-resistant malaria: research challenges, opportunities, and
public health implications. Am J Trop Med Hyg 87:231–241. http://
dx.doi.org/10.4269/ajtmh.2012.12-0025.

4. World Health Organization. 2013. Malaria entomology and vector con-
trol. World Health Organization, Geneva, Switzerland.

5. Dekker T, Geier M, Cardé RT. 2005. Carbon dioxide instantly sensitizes
female yellow fever mosquitoes to human skin odours. J Exp Biol 208:
2963–2972. http://dx.doi.org/10.1242/jeb.01736.

6. McMeniman CJ, Corfas RA, Matthews BJ, Ritchie SA, Vosshall LB.
2014. Multimodal integration of carbon dioxide and other sensory cues
drives mosquito attraction to humans. Cell 156:1060 –1071. http://
dx.doi.org/10.1016/j.cell.2013.12.044.

7. Lacroix R, Mukabana WR, Gouagna LC, Koella JC. 2005. Malaria
infection increases attractiveness of humans to mosquitoes. PLoS Biol
3:e298. http://dx.doi.org/10.1371/journal.pbio.0030298.

8. Cornet S, Nicot A, Rivero A, Gandon S. 2013. Malaria infection increases
bird attractiveness to uninfected mosquitoes. Ecol Lett 16:323–329. http://
dx.doi.org/10.1111/ele.12041.

9. De Moraes CM, Stanczyk NM, Betz HS, Pulido H, Sim DG, Read AF,
Mescher MC. 2014. Malaria-induced changes in host odors enhance mos-
quito attraction. Proc Natl Acad Sci U S A 111:11079 –11084. http://
dx.doi.org/10.1073/pnas.1405617111.

10. Foster WA. 1995. Mosquito sugar feeding and reproductive energetics.
Annu Rev Entomol 40:443– 474. http://dx.doi.org/10.1146/
annurev.en.40.010195.002303.

11. Gu W, Müller G, Schlein Y, Novak RJ, Beier JC. 2011. Natural plant

Malaria Parasites Produce Volatile Attractants

March/April 2015 Volume 6 Issue 2 e00235-15 ® mbio.asm.org 5

 
m

bio.asm
.org

 on January 14, 2016 - P
ublished by 

m
bio.asm

.org
D

ow
nloaded from

 

http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00235-15/-/DCSupplemental
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00235-15/-/DCSupplemental
http://dx.doi.org/10.1056/NEJMp1108322
http://dx.doi.org/10.1056/NEJMp1108322
http://dx.doi.org/10.4269/ajtmh.2012.12-0025
http://dx.doi.org/10.4269/ajtmh.2012.12-0025
http://dx.doi.org/10.1242/jeb.01736
http://dx.doi.org/10.1016/j.cell.2013.12.044
http://dx.doi.org/10.1016/j.cell.2013.12.044
http://dx.doi.org/10.1371/journal.pbio.0030298
http://dx.doi.org/10.1111/ele.12041
http://dx.doi.org/10.1111/ele.12041
http://dx.doi.org/10.1073/pnas.1405617111
http://dx.doi.org/10.1073/pnas.1405617111
http://dx.doi.org/10.1146/annurev.en.40.010195.002303
http://dx.doi.org/10.1146/annurev.en.40.010195.002303
mbio.asm.org
http://mbio.asm.org/
http://mbio.asm.org/


sugar sources of anopheles mosquitoes strongly impact malaria transmis-
sion potential. PLoS One 6:e15996. http://dx.doi.org/10.1371/
journal.pone.0015996.

12. Beier JC, Müller GC, Gu W, Arheart KL, Schlein Y. 2012. Attractive
toxic sugar bait (ATSB) methods decimate populations of Anopheles ma-
laria vectors in arid environments regardless of the local availability of
favoured sugar-source blossoms. Malar J 11:31. http://dx.doi.org/
10.1186/1475-2875-11-31.

13. Nyasembe VO, Tchouassi DP, Kirwa HK, Foster WA, Teal PE, Borge-
meister C, Torto B. 2014. Development and assessment of plant-based
synthetic odor baits for surveillance and control of malaria vectors. PLoS
One 9:e89818. http://dx.doi.org/10.1371/journal.pone.0089818.

14. Nyasembe VO, Teal PE, Mukabana WR, Tumlinson JH, Torto B. 2012.
Behavioural response of the malaria vector Anopheles gambiae to host
plant volatiles and synthetic blends. Parasit Vectors 5:234. http://
dx.doi.org/10.1186/1756-3305-5-234.

15. Gershenzon J, Dudareva N. 2007. The function of terpene natural prod-
ucts in the natural world. Nat Chem Biol 3:408 – 414. http://dx.doi.org/
10.1038/nchembio.2007.5.

16. Gutensohn M, Nagegowda DA, Dudareva N. 2013. Involvement of com-
partmentalization in monoterpene and sesquiterpene biosynthesis in
plants, p 155–169. In Bach TJ, Rohmer M (ed), Isoprenoid synthesis in
plants and microorganisms. Springer-Verlag, New York, NY.

17. Hick AJ, Luszniak MC, Pickett JA. 1999. Volatile isoprenoids that control
insect behaviour and development. Nat Prod Rep 16:39 –54. http://
dx.doi.org/10.1039/a705984a.

18. Van Dooren GG, Striepen B. 2013. The algal past and parasite present of
the apicoplast. Annu Rev Microbiol 67:271–289. http://dx.doi.org/
10.1146/annurev-micro-092412-155741.

19. Jomaa H, Wiesner J, Sanderbrand S, Altincicek B, Weidemeyer C,
Hintz M, Türbachova I, Eberl M, Zeidler J, Lichtenthaler HK, Soldati
D, Beck E. 1999. Inhibitors of the nonmevalonate pathway of isoprenoid
biosynthesis as antimalarial drugs. Science 285:1573–1576. http://
dx.doi.org/10.1126/science.285.5433.1573.

20. Odom AR, Van Voorhis WC. 2010. Functional genetic analysis of the
Plasmodium falciparum deoxyxylulose 5-phosphate reductoisomerase
gene. Mol Biochem Parasitol 170:108 –111. http://dx.doi.org/10.1016/
j.molbiopara.2009.12.001.

21. Yeh E, DeRisi JL. 2011. Chemical rescue of malaria parasites lacking an
apicoplast defines organelle function in blood-stage Plasmodium falci-
parum . PLoS Bio l 9:e1001138. ht tp : / /dx .doi .org/10 .1371/
journal.pbio.1001138.

22. Wong RP, Flematti GR, Davis TM. 2012. Investigation of volatile organic
biomarkers derived from Plasmodium falciparum in vitro. Malar J 11:314.
http://dx.doi.org/10.1186/1475-2875-11-314.

23. Ashley DL, Bonin MA, Cardinali FL, McCraw JM, Wooten JV. 1994.
Blood concentrations of volatile organic compounds in a nonoccupation-
ally exposed US population and in groups with suspected exposure. Clin
Chem 40:1401–1404.

24. Yang C, Wang J, Li D. 2013. Microextraction techniques for the deter-
mination of volatile and semivolatile organic compounds from plants: a
review. Anal Chim Acta 799:8 –22. http://dx.doi.org/10.1016/
j.aca.2013.07.069.

25. Xie Z, Zhao Z, Wu G, Ye X, Shi L, Guo J. 2012. Component analysis of
the root exudates at different growth stages in chili pepper. Acta Agric
Boreali Occidentalia Sinica 8:. (In Chinese.)

26. Chen C, Hostettler FD. 1969. Phenolic constituents of elm wood:
2-naphthoic acid derivatives from Ulmus thomasii. Tetrahedron 25:
3223–3229. http://dx.doi.org/10.1016/S0040-4020(01)82854-4.

27. Ze-Kun L. 2012. GC-MS analysis of volatile oils from Bupleurum chinense
DC. f. vanheurckii (Muell.-Arg.) Shan et Y. Li. J Med Plants Res
6:926 –928. http://dx.doi.org/10.5897/JMPR11.1174.
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