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Abstract

“Hybrid” climate policy simulations have sought to bridge the gap between “bottom-up” engineering and
“top-down” macroeconomic models by integrating the former's energy technology detail into the latter's
macroeconomic framework. Construction of hybrid models is complicated by the need to numerically calibrate
them to multiple, incommensurate sources of economic and engineering data. I develop a solution to this
problem following Howitt's [Howitt, R.E., 1995. Positive Mathematical Programming, American Journal of
Agricultural Economics 77: 329-342] positive mathematical programming approach. Using data for the U.S., I
illustrate how the inputs to the electricity sector in a social accounting matrix may be allocated among discrete
types of generation so as to be consistent with both technologies' input shares from engineering cost estimates,
and the zero profit and market clearance conditions of the sector's macroeconomic production structure.
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1. Introduction

A crucial factor in mitigating future climate change is the expansion of energy supply
technologies that have low or zero carbon dioxide (CO2) emissions (IPCC, 2001). Computational
policy models used to assess the climate implications of economic growth, energy use and GHG
emissions represent these technologies in different ways, which has resulted in divergent
predictions of the contributions of new energy sources – particularly renewables – to the future
global energy supply. The main divide is between “bottom-up” engineering models, which
simulate the interactions among the numerous individual energy technologies that make up the
energy system of an economy, and “top-down”macroeconomic models, which simulate the effect
on prices of the supply–demand interactions across the markets for all commodities, energy and
non-energy alike.1

Attempts to reconcile these two approaches have focused on creating hybrid models which
incorporate bottom-up technology detail within a top-down macroeconomic framework. The aim
of this paper is to further this line of inquiry by developing a method for transparently integrating
engineering data on technology detail into the macroeconomic accounts on which top-down
models are empirically calibrated. I apply Howitt's (1995) positive mathematical programming
(PMP) approach to data for the U.S. electric power sector to estimate the allocation of capital,
labor, energy and material inputs among discrete activities and technologies in a way that is
consistent with both the input shares implied by engineering cost data, and the conditions of zero
profit and market clearance which define the sector's production structure from a macroeconomic
perspective. The results demonstrate how the inconsistencies between engineering and
macroeconomic data may be reconciled in a manner that is both transparent and portable
among a variety of modeling applications.

The disparities in the structure and scope of bottom-up and top-down models imply that each
has a comparative advantage in addressing complementary subsets of the research questions
which arise in energy and climate policy analysis. Top-down models are a standard tool for
assessing the macroeconomic costs of CO2 abatement and its economy-wide feedbacks on prices,
commodity and factor substitution, income and economic welfare. Bottom-up models are used to
investigate the impacts of CO2 emissions constraints on the portfolio of technologies that make up
the supply and demand components of the energy system, in order to identify low-cost abatement
opportunities or design technology-based subsidies or emission standards.

However, the results of these two approaches have tended to diverge, with top-down models
typically indicating larger macroeconomic costs as the consequence of a given mitigation policy
(NAS, 1991: 62; Grubb et al., 1993; Wilson and Swisher, 1993; IPCC, 2001). The origins of this
1 Bottom-up models (e.g., MARKAL — Kypreos, 1998) are primal activity analysis simulations which solve for the
levels of capacity of energy transformation and conversion technologies that minimize the cost of fulfilling demands for
energy services. Energy demands are either specified exogenously or derived from simple aggregate macroeconomic
models (e.g. Manne et al., 1995). Energy supplies emanate from a detailed model of the energy system which represents
the capacities of and linkages among of a large set of discrete processes which transform primary energy resources into
energy carriers, and convert these commodities into energy services that satisfy final demands. Top-down
macroeconomic models come in two flavors: primal simulations of an aggregate Ramsey growth model with an
environmental sector (e.g., DICE and RICE — Nordhaus and Boyer, 1999), and, more relevant to the subject matter of
the present paper, primal–dual computable general equilibrium (CGE) simulations (e.g., EPPA — Paltsev et al., 2005).
The latter solves for the set of commodity and factor prices and levels of industry activity and household income which
clear all markets in the economy, given factor endowments, households’ consumption technologies (specified by their
utility functions) and industries’ transformation technologies (specified by their production functions).
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divide are by now well understood, with perhaps the biggest factor being bottom-up models'
technological optimism about low-cost abatement potentials.2

Attempts to reconcile these differences have focused on the development of so-called “hybrid”
models, which attempt to bridge the bottom-up/top-down divide by combining the detailed
engineering specifications of energy supply technologies with the sector-wide nested production
functions of CGE models.3 Despite being the focus of much recent research (Boehringer, 1998;
Boehringer et al., 2003; Frei et al., 2003; Kumbaroglu andMadlener, 2003;McFarland et al., 2004)
this approach is still very much in its infancy. Perhaps the most important reason is the difficulty
involved in constructing databases which integrate macroeconomic data with engineering detail in
way that facilitates simple calibration of hybrid models.

To be consistent with bottom-up approaches, hybrid models' representation of the supplies of
and the demands for energy commodities should faithfully reflect the engineering characteristics of
different energy supply and conversion technologies. Simultaneously, to be consistent with top-
down approaches, the activity levels and the input demands of the individual technologies
introduced into hybrid models should match the inter-industry data employed in macroeconomic
studies. The problem is that the engineering and the economic data are rarely consistent with each
other. Thus, calibrating a model to faithfully capture both the aggregate and the disaggregate
characteristics of energy's role in a CO2 emission-constrained economy necessitates the balancing
of competing demands. The current state of the technical art in this regard is more a matter of
judicious assumptions and careful, manual calibration than systematic, replicable procedures.

It is in addressing this need for systematization that this paper makes its contribution. Its major
advance is to simplify the calibration of hybrid models through the creation of a mathematical
scheme that first reconciles and then integrates the kinds of engineering information used in
bottom-up models with the macroeconomic data used to calibrate top-down models. This scheme
is applied to the development of a hybrid model of the electric power sector in the U.S. using data
which is readily available.

The methodology developed in the paper is deliberately simple, transparent, and above all,
replicable, and, as far as the author is aware, represents the first completely general and robust
scheme for calibrating hybrid energy policy simulations. This approach will benefit economists,
engineers and modelers by speeding up the reconciliation of top-down and bottom-up data on the
energy system of an economy, expediting comparisons of the effects of different relative price
regimes on the structures of the costs of energy production, and, hopefully, facilitating the
construction of hybrid models without tears.

The rest of the paper is organized as follows. Section 2 sets the stage by presenting simplified top-
down and bottom-upmodels of the electric power sector, and using them to identify the challenges in
2 The major differences between top-down and bottom-up models lie in their domains (economy-wide versus the
energy system), solution concept (primal partial equilibrium versus primal–dual general equilibrium), scope fo
substitution (the demand influences of non-energy sectors and the supply influences of factor price changes versu
discrete technology set), and inclusion of optimistic low-or negative-cost emission reduction possibilities (IPCC, 2001)
3 This method may be contrasted with hybrid simulations such as MERGE (Manne et al., 1995) and MARKAL

MACRO (Kypreos, 1998). These are primal non-linear or mixed integer programming models in which a simple
macroeconomic growth model drives increases in output and the demand for energy services, which is then satisfied by a
technologically-detailed supply-side model of the energy system. Another approach is taken by Jacobsen (2000), who
incorporates the diffusion of energy technologies of different vintages, each with a different level of energy efficiency
into a top-down macro-econometric model. Schäfer and Jacoby (2005) and Boehringer and Rutherford (2005) use yet a
third approach of soft-linking a bottom-up engineering model and a top-down CGE model, using the latter’s price and
quantity allocations as boundary conditions for the former's optimization problem.
r
s

.
-

,



Fig. 1. Schematic of the social accounting matrix.
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reconciling the data and algebraic relationships that underlie each of them. Themeat of the paper is in
Section 3, which presents a realistic top-down model of the electric power sector, outlines the
engineering data with which, in a perfect world, its macroeconomic relationships should be
consistent, and develops the calibration procedure for establishing consistency between the two.
Section 4 describes the data for the U.S. electric power sector, and the engineering and economic
calculations necessary to re-cast this information into a format suitable for reconciliation. The results
are analyzed and discussed in Section 5. Section 6 concludes by briefly discussing the method-
ology's usefulness in constructing CGE models with technology detail.

2. Reconciling top-down and bottom-up approaches to modeling the electricity sector

2.1. Using social accounting matrices to calibrate a top-down production structure

The first step in constructing a hybrid model is to define the macroeconomic framework into
which technology detail is to be incorporated. The framework that is typically employed is the
array of inter-industry demands for inputs and supplies of outputs. This information is tabulated in
a social accounting matrix (SAM), which forms the basis for numerically calibrating the
production and demand functions in CGE models.

A SAM is a snapshot of the flows of value in an economy in equilibrium at a particular point in
time, and is shown schematically in Fig. 1.4 The economy represented therein possesses N
industry sectors, F non-reproducible primary factors, and D categories of final uses by
households. Each industry (indexed by j=1,…, N ) is assumed to produce a single commodity
(indexed by i=1,…, N ) by combining portions of its own and other sectors' outputs as
intermediate inputs with inputs of primary factors (e.g. labor and capital, indexed by f=1,…, F ).
The output of each industry satisfies both other sectors' demands for intermediate goods and
households' final uses (e.g. consumption and saving, indexed by d=1,…, D). The corresponding
flows of economic value, which are recorded in the currency of the benchmark year, are tabulated
in the SAM's three data matrices: an N×N commodity-by-industry matrix of inter-industry
4 For more in-depth discussions of SAMs and their use in CGE modeling, see King (1985), Kehoe (1998), Rutherford
and Paltsev (1999) and Sue Wing (2004).

http://mpsge.org/papers/exburden.pdf
http://mpsge.org/papers/exburden.pdf
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transactions (X̄ ), an F×N matrix of value-added activities by industry (V̄), and an N×D
commodity-by-use matrix of final demand activities (Ḡ).

The organization of these data reflects the principle of double-entry book-keeping. For each
industry or commodity in the SAM, the sum of the cells across a row, which reflects the total value
of sales of product, is equal to the sum of the cells down the column corresponding to the same
activity, which reflects the total value of inputs to production. These totals give the gross output of
the commodity or sector in question, and the equality of the row and column sums reflects the
properties of constancy of returns to scale and perfect competition in production, which imply that
the value of commodity output is equal to the sum of the values of the inputs use in its production
(Sue Wing, 2004). Thus, focusing narrowly on the electric power sector (ELEC), the value of that
industry's output, ȳ, is equal to the sum of the entries down its column, or the sum of the inputs of
the i intermediate goods, x̄, and the f primary factors, v̄, to the production of electricity:

ȳðELECÞ ¼
X
i

x̄ði; ELECÞ þ
X
f

v̄ð f ; ELECÞ: ð1Þ

Now consider the use of these data to specify a production function for the electric power sector
in a typical top-down climate policy model (Goulder, 1995), shown diagramatically in Fig. 2(a).
Fig. 2. The structure of production in top-down and bottom-up models (a) top-down; (b) bottom-up.
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Assume that there are two factors of production: labor L and capital K( f=L, K ), and several
intermediate inputs to production that can be partitioned into two subsets: energy commodities
(typically, fuels such as coal, oil and gas) e⊂ i and materials m⊂ i(i=e, m). The diagram shows a
nested structure of production in which each node of the tree represents the output of its constituent
constant elasticity of substitution (CES) production functions, and the branches denote the inputs
to these production functions. Starting at the top of the tree, output y is a CES function of a
composite of labor and capital inputs (KL) and a composite of energy and material inputs (EM).
KL represents the value added by primary factors' contribution to production, and is a CES
function of inputs of labor v(L) and capital v(K ). EM represents the value of intermediate inputs'
contribution to production, and is a CES function of two further composites, E which is itself a
CES function of energy inputs x(e), and M, a CES function of material inputs x(m).

At each level of the nested structure in Fig. 2(a), numerical calibration of the technical coefficients
of the production functions is determined by the corresponding elasticities of substitution,σ, and the
shares of value of the corresponding inputs in the value of output, recorded in the SAM. Thus the
relationship between KL, v(L) and v(K) is determined by σKL and the elements of the column of V̄
that corresponds to the electric power sector. E and M are specified as numerical functions of x(e)
and x(m) by the elasticities σE and σM, respectively, along with their corresponding subsets of the
elements in the appropriate column in X̄ . And, once the value of the input bundle EM is pinned down
as a function of E,M and σEM, the output of the electric sector y can be calibrated as a function of
KL, EM andσKLEM. In employing the SAM to calibrate the production structure, zero profit must be
maintained for the sector as a whole aswell as for each of its sub-components. Thus, letting Ē , M̄, KL¯¯̄
and EM¯¯¯ denote the benchmark values of the energy, material, capital-labor and energy-material
composites, respectively, equivalence between the value of output and the value of inputs at each
level of Fig. 2(a) implies that Eq. (1) may be disaggregated into the following components:

ȳ ¼ KL̄ þEM̄ ; KL̄¼ v̄ðKÞ þ v̄ðLÞ; EM̄ ¼ Ēþ M̄ ; Ē ¼
X
e

x̄ðeÞ and M̄

¼
X
m

x̄ðmÞ:

2.2. A bottom-up production structure: calibration difficulties

From a bottom-up perspective, the previous section represents an overly simplistic
characterization of the way in which the production of electric power is actually organized. In
the engineering view, electricity output is generated from a number of discrete technologies, each
with its own distinct characteristics, for example by a coal technology that combines primary factor
inputs of labor and capital with intermediate inputs of coal, by a gas technology from inputs of
labor, capital and natural gas, and similarly for petroleum, hydropower, nuclear fission, etc. Fig. 2
(b) shows this alternative production structure, in which there are a number of supply technologies,
indexed by tech, each of which produce a single homogeneous commodity, and are therefore
perfectly substitutable for one another (σ=∞). The level of output of each technology,
yTECH(tech), is a Leontief fixed-coefficients transformation of technology-specific components
vTECH(L, tech), vTECH(K, tech), xTECH(e, tech) and xTECH(m, tech) of the inputs to the electric
sector of labor and capital and energy and non-energy intermediate commodities.

In order to use the macroeconomic data in the SAM to numerically calibrate the production
structure in Fig. 2(b), onewould require data on the benchmark values of the output of and inputs to
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each technology: ȳ TECH, x̄TECH and v̄TECH. Following the top-down example, the zero profit
conditions for the sector and for each technology are:

ȳ ¼
X
tech

ȳ TECHðtechÞ ð2Þ

and

ȳ TECHðtechÞ ¼
X
e

x̄ TECHðe; techÞ þ
X
f

v̄ TECHðf ; techÞ; ð3Þ

respectively. However, if wewant to disaggregate themonolithic electric power sector into discrete
technologies there are additional conditions whichmust be satisfied. In particular, the value of each
input to the different technologies should sum to the value of its input to the sector, resulting in the
market clearance conditions for factors

v̄ð f Þ ¼
X
tech

v̄ TECHð f ; techÞ; ð4aÞ

and for intermediate energy and material inputs

x̄ðeÞ ¼
X
tech

x̄ TECHðe; techÞ ð4bÞ

and

x̄ðmÞ ¼
X
tech

x̄ TECHðm; techÞ: ð4cÞ

The foregoing procedure is equivalent to separating the electric power sector in the SAM into
an array of column accounts, each of which records the inputs and output of the individual
technologies which make up the sector. It is exactly the procedure that must be performed when
calibrating hybrid CGE models, with one crucial difference: the values of x̄TECH and v̄TECH are
not known to the modeler. The disaggregation procedure must therefore employ additional
information on the input-using characteristics of the technologies that are represented, which for
the most part are based on a mix of engineering data and assumptions.

Many CGE models for the analysis of energy and climate policy include future high-cost
“backstop” technologies that are currently unprofitable and are inactive at initial relative prices,
and therefore neither produce output nor absorb inputs in the benchmark dataset on which the
model is calibrated (e.g., Goulder, 1995; Paltsev et al., 2005). These kinds of technologies are
often included as production functions that are calibrated on engineering data. As relative prices
change, either along the baseline solution trajectory in the case of dynamic models, or as a result
of policy shocks, these technologies become active and begin demanding inputs and producing
output. Such an approach is common in CGE simulations, as the inclusion of initially inactive
technologies does not require the modeler to disaggregate the SAM.

By contrast, it is substantially more difficult for CGE modelers to incorporate the kind of
energy system detail found in even simple bottom-up models, as this involves partitioning the
SAM in accordance with estimates of the value of inputs to and the output of specific technologies
which are active in the benchmark. Only a handful of studies have accomplished this feat, and
their method of organizing their data and assumptions into a procedure for disaggregating the
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SAM — which is the crucial element in the synthesis of top-down and bottom-up approaches-
remains largely undocumented.

For example, Boehringer (1998) presents candidate SAMs in which the electric power sector is
disaggregated using generic input shares and capacity constraints for a number of aggregate
generation technologies.5 But although the values of the input cost shares and the outputs of these
technologies appear plausible, the paper provides no information about the procedure by which the
shares and the assumed capacity bounds were employed to disaggregate the SAM. Similarly,
Boehringer et al. (2003) present cost-share data for electricity generation technologies in Europe
derived from a set of bottom-up studies (the IKARUS database), but give no details about how
exactly these data are integrated into the SAMs used to calibrate that paper's multi-regional CGE
model. McFarland et al. (forthcoming) introduced carbon-capture and sequestration and competitor
electricity generation technologies as backstops into the MIT-EPPA model. But while these authors
rigorously document both the bottom-up data and their use in calibrating individual technologies'
production functions, they provide few specifics on how these data are used to separately account for
technologies' inputs and outputs of the within the framework of the SAM.

2.3. The essence of the problem to be solved

The rest of the paper focuses squarely on the issue of how to disaggregate the SAM in away that
reflects the characteristics of bottom-up data. To understand the challenge in doing so, it is useful to
return to Fig. 2(b). In this model, even if the shares of each technology in the total electric output of
the benchmark year are known with certainty, it is by no means guaranteed that the input data will
be consistent with the value shares of inputs for the electric power sector as a whole given in the
SAM. A simple example makes this clear. Suppose that, as in Boehringer (1998), we calculate the
shares of the different inputs in the value of output from engineering data, and the shares of the
different technologies in electricity output from statistics on electricity generation. The result will
be benchmark matrices of input shares for energy, materials and primary factors by technology:
s̄E
TECH (e, tech), s̄ M

TECH (m, tech) and s̄ f
TECH ( f, tech), respectively, and the shares of technologies'

outputs in the total output of the sector, given by the vector s̄Y
TECH (tech). The benchmark values of

the output of and inputs to each technology can then be recovered from Eqs. (2) and (3):

ȳ
TECHðtechÞ ¼ s̄TECHY ðtechÞ ȳ ; ð5Þ

x̄
TECHðe; techÞ ¼ s̄

TECH
E ðe; techÞ ȳ TECHðtechÞ ð6aÞ

x̄
TECHðm; techÞ ¼ s̄

TECH
M ðm; techÞ ȳ TECHðtechÞ ð6bÞ

and

v̄
TECHð f ; techÞ ¼ s̄

TECH
f ð f ; techÞ ȳ TECHðtechÞ ð6cÞ

However, there is no guarantee that the empirically-determined values of the input and output
shares for the different technologies will be consistent with the market clearance conditions in
Eqs. (4a) (4b) (4c). The source of this pathology is the doubly-constrained nature of the problem
5 These data are also used in Frei et al. (2003).
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of allocating technologies' inputs and outputs, where, for each primary factor or intermediate
good, the sum of the values of its contributions across all technologies must equal its value in the
SAM. The shares s̄TECH must then also satisfy:

x̄ðeÞ ¼
X
tech

s̄TECHE ðe; techÞsTECHY ðtechÞ ȳ ; ð7aÞ

x̄ðmÞ ¼
X
tech

s̄TECHM ðm; techÞsTECHY ðtechÞ ȳ ; ð7bÞ

and

v̄ð f Þ ¼
X
tech

s̄TECHf ð f ; techÞsTECHY ðtechÞ ȳ : ð7cÞ

It would certainly be fortuitous if one could find statistics on technologies' shares of total
generation and inputs' cost shares by technology, plug them into Eqs. (7a) (7b) (7c), and have
the results magically satisfy the market clearance conditions. But in reality, inconsistencies
among the different types of data mean that some adjustment of the shares will always be
necessary. The essence of the problem of calibrating hybrid models is therefore to find a new
set of technology share matrices sTECH whose elements satisfy Eqs. (7a) (7b) (7c) without
taking on values that are not “too far” from their empirically-determined benchmark coun-
terparts s̄TECH. The next section develops this intuition into a mathematically precise procedure,
which is then applied to macroeconomic and engineering data for the U.S. electric power sector
discussed in Section 4.

3. A model of the electric power sector

The electric power sector tabulated in the macroeconomic accounts is an aggregation of three
distinct but related activities: electricity generation, transmission and distribution, and the
overhead involved in administering the first two activities. This structure of production is shown in
Fig. 3. In line with the process-oriented models of production discussed above, transmission and
distribution (TD) and overheard (OH) be thought of as non-energy-using service activities, which
can be modeled by production functions that combine inputs of primary factors and non-energy
intermediate materials. Generation (GEN) is what most hybrid modeling studies seem to have in
mind in the way they represent the electric power sector. This activity encompasses a number of
discrete generation technologies, each of which can be modeled as a production function that
combines inputs of labor, capital and fuel to produce electricity. As explained above, the problem
of calibrating this structure on the data in the SAM is one of allocating proportions of each of the
inputs x̄ and v̄ among elements of the set of activities act={OH, TD, GEN}, and among elements
of the set of generation technologies, in a way that reflects data from other sources on the input and
output characteristics of different electricity supply technologies.

3.1. The top-down production structure

The first phase of the analysis is to specify the top-down zero-profit and market-clearance
conditions which underlie the production structure in Fig. 3. Moving from top to bottom in the
diagram, the first condition is the zero-profit constraint on the output of the sector as a whole,
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which equates the value of output of the electric power industry, ȳ, with the sum of the values of
output of its constituent activities, yACT:

ȳ ¼
X
act

yACTðactÞ: ð8Þ

The second condition is given by the market clearance constraints on the intermediate and
primary factor inputs to activities:

x̄ðiÞ ¼
X
act

xACTðact; iÞ ð9aÞ

and

v̄ð f Þ ¼
X
act

vACTðact; f Þ ð9bÞ

Going one level deeper in the hierarchy, the third constraint is the zero profit condition for each
activity, which equates the value of its output to the sum of the values of its constituent inputs,
namely, the i intermediate goods, xACT, and f primary factors, vACT:

yACTðactÞ ¼
X
i

xACTðact; iÞ þ
X
f

vACTðact; f Þ: ð10Þ

A fourth constraint is market clearance in generation, the value of whose output must equal the
sum of the value of output of its constituent generation technologies, yACT:

yACTðGENÞ ¼
X
tech

X
fuel

yTECHðtech; fuelÞ: ð11Þ
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Symmetrically, there is a fifth market clearance constraint that the value of each input to the
generation as a whole must be equal to the sum of the uses of that input across all generation
technologies:

xACTðGEN; iÞ ¼
X
tech

X
fuel

xTECHðtech; fuel; iÞ ð12aÞ

and

vACTðGEN; f Þ ¼
X
tech

X
fuel

vTECHðtech; fuel; f Þ: ð12bÞ

Finally, moving down into the details of the individual technologies which comprise
generation, the sixth constraint arises from the assumption that each technology earns zero profit,
so that the value of output of each technology must equal the sum of the values of the inputs to it:

yTECHðtech; fuelÞ ¼
X
i

xTECHðtech; fuel; iÞ þ
X
f

vTECHðtech; fuel; f Þ: ð13Þ

3.2. Bottom-up detail

In the second phase we identify the sources of bottom-up detail with which the Eqs. (8) (9a)
(9b) (10) (11) (12a) (12b) (13) should be consistent. The data which can be brought to bear in this
process will vary according to the economy under consideration. For the U.S. there are three
principal sources of information: the shares of inputs and output by generation technology,
technologies' efficiency of converting thermal energy to electricity, and the distribution of inputs
of capital to the electric sector's constituent activities. We describe these briefly below.

The first set of data is the technology share matrices of intermediate inputs, s̄TECH(tech, fuel, f ),
and primary factors, s̄TECH(tech, fuel, f ), which are derived from engineering studies, and of the
different technologies in the generation of electricity in the benchmark year recorded in the SAM,
s̄GEN(tech, fuel). Following Eqs. (5) and (6a) (6b) (6c), these data imply the following conditions:

yTECHðtech; fuelÞ ¼ s̄ GENðtech; fuelÞyACTðGENÞ; ð14Þ

xTECHðtech; fuel; iÞ ¼ s̄TECHðtech; fuel; iÞyTECHðtech; fuelÞ; ð15Þ

and

vTECHðtech; fuel; f Þ ¼ s̄ GENðtech; fuel; f ÞyTECHðtech; fuelÞ: ð16Þ

The second, related set of information is engineering data on the first-law of thermal efficiency of
the conversion of fossil fuels to electric power, and statistics on the prices of fuel inputs and the
output of generation by technology. By the assumptions of the model in Fig. 3, fossil fuels are the
only reproducible intermediate input to generation, with xTECH and yTECH capturing the values (i.e.,
price×quantity) of technologies' fossil fuel purchases and outputs. Empirical data on technologies'
first-law efficiencies η̄TECH(tech, fuel) specify the ratio of the quantity of electricity output to the
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quantity of fossil fuel inputs, thereby linking the engineering estimates xTECH and the statistics
yTECH with economic data on fossil fuel prices, p̄E(e), andmarginal costs of generation p̄G(tech, fuel)
in the base-year:

ḡ
TECHðtech; fuelÞ ¼ yTECHðtech; fuelÞ

p̄Gðtech; fuelÞ � xTECHðtech; fuel; eÞ
p̄EðeÞ : ð17Þ

The final set of data relates to the distribution of primary factor and non-fuel intermediate
inputs between the transmission and distribution and the overhead activities. The data described
above determine only the characteristics of generation, therefore additional structure is necessary
to characterize the allocation of inputs among the remaining activities. In particular, U.S.
economic statistics record the distribution of several categories of fixed assets in different
industries, which may be used to estimate the shares of capital input to different activities, s̄ K

ACT.
These data specify an alternative, bottom-up version of Eq. (9b):

vACTðact;KÞ ¼ s̄ACTK v̄ðKÞ ð18Þ

Unfortunately, no such statistics are available on the inter-activity distribution of intermediate
material inputs. The simplest assumption is to constrain TD and OH to exhibit the same intensity
of use for each input in m, i.e.:

xACTðOH;mÞ=yACTðOH;mÞ ¼ xACTðTD;mÞ=yACTðTD;mÞ: ð19Þ

While admittedly a crude approximation, a condition of this nature is necessary given the lack
of data — otherwise the system of estimating equations is not identified.

3.3. The calibration procedure

The problem of calibrating a hybrid model is to allocate the inputs in the SAM among the
activities and technologies at the sub-sector level according to Eqs. (8) (9a) (9b) (10) (11) (12a)
(12b) (13) in a way that simultaneously reflects the bottom-up information in Eqs. (14)–(19).
Given that the aim of this exercise is to produce a CGEmodel database that embodies the details of
specific technologies, the basis for the calibration procedure must be the primacy of the
macroeconomic framework. Eqs. (8) (9a) (9b) (10) (11) (12a) (12b) (13) should therefore be
regarded as constraints which must be satisfied with equality in order to maintain the row and
column balance of the SAM. The problem is then one of specifying an allocation {yACT, xACT,
vACT, yTECH, xTECH, vTECH} that meets these constraints with the smallest possible deviation from
the benchmark shares s̄GEN, s̄ TECH and s̄ K

ACTin Eqs. (14–16) and (18), respectively, and the
efficiency parameter η̄ TECH in Eq. (17). This constrained minimization procedure falls within a
class of econometric methods that Howitt (1995) has termed as positive mathematical
programming.

All that remains is to specify the minimand, which is the criterion that captures the divergence
between the allocation and the benchmark bottom-up information. The minimand is built up from
a number of components. The first is the divergence of the elements xTECH, vTECH and yACT from
the benchmark technology shares, quantified by the fractional deviations εTECH and εGEN of
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technologies' inputs from the input share data and of their outputs from the statistics on shares of
generation, respectively:

eTECHðtech; fuel; iÞ ¼ 1

s̄TECHðtech; fuel; iÞ
xTECHðtech; fuel; iÞ
yTECHðtech; fuelÞ

� �
−1; ð20Þ

eTECHðtech; fuel; f Þ ¼ 1

s̄TECHðtech; fuel; f Þ
vTECHðtech; fuel; f Þ
yTECHðtech; fuelÞ

� �
−1 ð21Þ

and

eGENðtech; fuelÞ ¼ 1

s̄ GENðtech; fuelÞ
yTECHðtech; fuelÞ

yACTðGENÞ
� �

−1: ð22Þ

The next component is the divergence of generation technologies' thermal efficiency implied
by the elements yTECH(tech, fuel) and xTECH(tech, fuel, e) from the engineering data η̄TECH, as
captured by the fractional deviation εη, which is derived from Eq. (17):

egðtech; fuelÞ ¼ 1

ḡTECHðtech; fuelÞ
yTECHðtech; fuelÞ
p̄
Gðtech; fuelÞ

� xTECHðtech; fuel; eÞ
p̄
EðeÞ

 !
−1: ð23Þ

The final element is the divergence of the allocation of capital among activities vACT(K) from
their benchmark shares of total sectoral capital input can be represented by the fractional deviation
εK, which is derived from Eq. (18):

eKðactÞ ¼ 1

s̄ACT
K ðactÞ

vACTðKÞ
v̄ðKÞ

 !
−1: ð24Þ

The calibration problem is therefore one of minimizing the sum of the squares of the error
terms in Eqs. (20)–(24):

minSSE ¼
X
tech

X
fuel

eGENðtech; fuelÞ� �2 þX
tech

X
fuel

X
i

eTECHðtech; fuel; iÞ� �2
þ
X
tech

X
fuel

X
f

eTECHðtech; fuel; f Þ� �2 þX
tech

X
fuel

egðtech; fuelÞ½ �2

þ
X
act

eKðactÞ� �2 ð25Þ

subject to the constraints of Eqs. (8–13) and (19). The procedure is implemented as a non-linear
program (NLP) in GAMS (Brooke et al., 1998) and solved using CONOPT version 3 (Drud,
1985, 1994, 1997).6 The model code is given in an appendix.7
6 This model belongs to a class of methods for matrix balancing that has long been studied in operations research (e.g.,
Schneider and Zenios, 1990).
7 The results generated by the code in the appendix differ slightly from those in the paper as the latter employ a SAM

with higher numerical precision (six significant digits).
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4. The data

To operationalize the methodology described above we need three types of information:
macroeconomic data on the value of inputs and output of the electric power sector, statistics on the
output of electricity by type of generation technology, and information on the characteristics of
the technologies used to generate electricity. This section discusses each of these in detail.

4.1. A social accounting matrix for the U.S. in the year 2000

The primary dataset is a U.S. social accounting matrix (SAM) for the year 2000, which was
constructed using the SAM for 1999 published by the Bureau of Economic Analysis (BEA). The
basic data comes from the BEA's 92-sector “Make of Commodities by Industries” and “Use of
Commodities by Industries” tables for 1999, from which an initial SAMwas constructed using the
industry technology assumption (see e.g. Reinert and Roland-Holst, 1992). Its components of
value added were disaggregated using data on industries' shares of labor, capital, taxes and
subsidies in GDP published by BEA. The resulting benchmark flow table was then scaled to
approximate the U.S. economy in the year 2000 using the growth rate of real GDP from 1999–
2000 (3.75%), deflated to year 2000 using the GDP deflator from the NIPAs.

The 92-sector SAM was aggregated into nine industry groupings. In line with the goal of
providing a detailed representation of the energy sectors, the disaggregation scheme contains five
energy industries: coal, crude oil and gas mining, natural gas distribution, petroleum refining and
electric power. The remaining industry sectors are highly aggregate in character: agriculture,
energy intensive manufacturing (an amalgam of the pulp and paper, chemical, primary metal and
non-metallic material products industries), other manufacturing sectors, transportation, services,
and a composite of the remaining industries in the economy.

The economic accounts do not record the contributions to the various sectors of the
economy of key natural resources that are germane to the climate problem. Sue Wing (2001)
employs information from a range of additional sources to approximate these values as shares
of the input of capital to the agriculture, oil and gas, mining, coal, and electric power, and rest-
of-economy industries. Applying these shares allows the value of natural resource inputs to be
disaggregated from the factor supply matrix v̄ , with the value of capital being decremented
accordingly.

The final SAM, shown in Fig. 4, provides the macroeconomic data base in which the column
account representing the electric power sector is to be disaggregated. It defines the values of the
output of the electric power sector, ȳ, as well as the inputs of intermediate goods, x̄, and primary
factors, v̄, to electricity production, which serve as the control totals for the constrains on the
calibration procedure.

4.2. Electricity generation and fuel use statistics

Net electricity generation by technology is computed from the EIA Utility Form 906 database on
net generation, fuel consumption, fuel stocks, prime mover and fuel type for the year 2000. The
results, which define the technology share matrix, s̄GEN, are shown in Table 1. The technology data
contain two classes of coal-fired generation (steam turbines, ST, and combined-cycle, CC), five
classes of petroleum-and natural gas-fired generation (internal combustion engines, IC, combustion
turbines, CT, and gas turbines, GT, in addition to ST and CC), and six carbon-free renewable
electricity technologies. Table 2 shows the fossil fuel heat input by technology, also computed from



Fig. 4. Year 2000 social accounting matrix for the U.S. (2000 dollars×1010).
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the Form 906 data. The data in Table 1, when divided by these values, gives an estimate of the gross
thermal efficiency by technology, η̄TECH.

4.3. Bottom-up characteristics of electric generation technologies

Electric power generation technology characteristics are from the assumptions to the annual
energy outlook (AEO — DOE/EIA, 2003a) and are reproduced in Table 3:

• The average size of a generation unit (size) in kW of capacity
• The total capital (overnight) cost of the unit (k) per kW
• Variable O&M per kWh of output (uvom) and fixed O&M per kW of capacity (ufom), and
• The average heat rate (hrt)
Table 1
Net electricity generation (1012 kWh) in 2000 by technology and fuel

Technology Oil Coal Gas Natural resources

Nuclear – – – 0.2482
Hydro – – – 0.7054
Geothermal – – – 0.0006
Wind – – – 7.8×10−6

Solar – – – 2.5×10−8

Biomass – – – 0.0010
Internal combustion 0.0013 – 0.0005 –
Gas turbine 0.0052 – 0.0216 –
Steam turbine 0.0619 1.6973 0.2076 –
Combustion turbine 0.0010 – 0.0505 –
Combined cycle 0.0002 0.0019 0.0069 –

Source: EIA Form 906 data and author's calculations.



Table 2
Heat input (1012 kWh) in electricity generation in 2000 by technology and fuel

Technology Oil Coal Gas

Internal combustion 0.0045 – 0.0017
Gas turbine 0.0229 – 0.0860
Steam turbine 0.1919 5.2613 0.6845
Combustion turbine 0.0035 – 0.1367
Combined cycle 0.0005 0.0050 0.0136
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The table includes additional assumptions about the capacity factors (cf ) of different
technologies and the average price of different fuels (pF) in the year 2000, both drawn from a
variety of sources.

Source: EIA Form 906 data and author's calculations.
Table 3
Electric power technology characteristics

Technology size kcost uvom uvom hrt cf pE

Sizea

(mW)
Overnight
costsa ($2000/
kW)

Variable O&Ma

($2000 mills/kWh)
Fixed O&Ma

($2000/kW)
Heat ratea

(btu/kWh)
Capacity
factorb

Fuel price
($2000/
million btu)

New
scrubbed coal

600 1127.34 3.00 23.95 9000 0.85 1.20c

IGCC 550 1335.42 1.99 32.94 8000 0.85 1.20c

Conv. gas/oil
combined cycle

250 523.62 1.99 11.98 7500 0.91 4.24d

Adv. gas/oil combined
cycle

400 593.96 1.99 9.98 7000 0.91 4.24d

Conv. combustion
turbine

160 399.55 4.00 9.98 10,939 0.92 4.24d

Adv. combustion
turbine

230 449.37 3.00 7.98 9394 0.92 4.24d

Fuel cells 10 2087.64 19.96 6.98 7500 0.87 4.30c

Adv. nuclear 1000 2068.10 0.42 57.13 10,400 0.85 1.95e

Distributed generation/
base

2 785.43 5.99 13.47 9400 0.86 4.30c

Distributed generation/
peak

1 942.71 5.99 13.47 10,400 0.05 4.30c

Biomass 100 1722.27 2.89 44.88 8911 0.80 1.25f

MSW/landfill gas 30 1426.27 0.01 96.15 13,648 0.90 –
Geothermal 50 1725.21 0.00 70.09 32,320 0.95 –
Wind 50 979.83 0.00 25.50 10,280 0.40 –
Solar thermal 100 2534.08 0.00 47.78 10,280 0.42 –
Solar PV 5 3824.56 0.00 9.83 10,280 0.30 –
New hydrog 50 3370.18 2.09 7.52 10,280 0.45 –
Existing hydroh 50 390.35 2.09 7.52 10,280 0.45 –
a DOE/EIA (2003a) Table 40.
b DOE/EIA (1999) Table C4; Hamachi et al. (2003) Table 1; DOE/EIA (2003a) Table 73 and text.
c DOE/EIA (2003b) Table 4.5.
d Average of (DOE/EIA, 2003b) petroleum and natural gas costs per Btu.
e NEA (1994) Fig. 6.6 (PWR fuel cycle with direct disposal) at 8% interest rate, deflated.
f Haq (2002).
g Derived from parameter estimates in Hall et al. (2003) assuming a unit size approximately equal to their sample mean.
h Same as new hydro except overnight costs less Hall et al. (2003) dam and powerhouse construction costs.
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These data are used to compute the benchmark unit characteristics of the different electricity
generation technologies, shown in Table 4. These are:

• Each unit's average annual output (q)
• Its variable and fixed operation and maintenance (O&M) costs (vom and fom, respectively),
which, following McFarland et al. (2004), are assumed to consist entirely of labor, and make
up its annual labor cost (lcost).8

• Its annual cost of capital (kcost), equal to plant overnight costs that are levelized using
assumptions of an interest rate (r) of 10% and a term (T) of 15 years, 9 and

• Annual cost of inputs of fuel (fcost)

The costs of labor, capital and fuel determine the benchmark shares of fuel, capital and labor
input in the cost of generation. Together, these determine the total generation cost (gcost), which
along with q gives the average cost of generation pG.

Two further pre-processing steps are necessary to prepare these data for use in the calibration
exercise. The first is to match the AEO technologies to the technology classes used to tabulate the EIA
Form 906 data on actual net electricity generation. The matching process is by no means foolproof, as
there is the inevitable need to make assumptions about the similarity between the technologies in the
two classification schemes. For some technologies, there is a clear one-to-one relationship between the
categories in Tables 1 and 2) and those in 3 and 4 (e.g., coal STand CC technologies, as well as CTand
nuclear and renewable generation). For the others, the match was made based on judgments of the
similarity between the attributes of the AEO and Form 906 technology categories. For CC and GT
technologies, it was assumed that higher thermal efficiency and lower fuel requirements resulted when
theywere firedwith natural gas as opposed to oil, resulting in a smaller share of fuel in total costs for the
former. The “advanced” combined-cycle and gas-turbine AEO technologies that exhibit this charac-
teristic were thus matched with gas-fired generation, and their “conventional” counterparts were
matched with oil. IC and ST technologies' characteristics were assumed to be the same as the
combustion turbine. Inwith the previous assumption about thermal efficiencies, it was assumed that oil-
fired generationwas better represented by conventional CTand gas-fired technologies by advancedCT.

The final step is to specify the shares of “fuel” in the value of total output of the carbon-free
technologies in Table 4. These generate electricity from inputs of so-called “fixed-factor” energy
resources, principally land area with incident insolation or atmospheric boundary-layer flow in the
cases of solar and wind, topographically-determined hydrostatic potential in the case of
hydroelectricity, or geologically-determined hot dry rock in the case of geothermal energy. A key
limitation is the dearth of data on the value of these inputs, which not separately recorded in
conventional accounts but are lumped together with overnight (construction) costs. Their value is
thus estimated as a share of levelized capital input. In the absence of additional information, it is
assumed that the share of the value of fixed-factor energy resources in the input of broad capital is
roughly similar among all technologies, leading to benchmark shares of 20% of total costs, similar
to the cost shares of fuel inputs computed for nuclear and biomass generation.
8 In reality, fixed and variable O&M both comprise labor and intermediate materials. The simplifying assumption of
attributing O&M entirely to labor is made because of the lack of data on intermediate inputs to generation.
9 The average bank prime interest rate (http://www.federalreserve.gov/releases/h15/data/a/prime.txt) was 9.23% in

2000. In tests of robustness of these assumptions, simultaneously reducing r to 8% and lengthening T to 30 years
significantly reduced both capital's cost share and the overall cost of generation. However, doing so ignores the empirical
regularity of the term structure of interest rates. Kahn (1995) discusses the range of plausible assumptions about electric
power project financing parameters.

http://www.federalreserve.gov/releases/h15/data/a/prime.txt


Table 4
Quantities and costs of inputs and output, and initial input cost shares for electric power technologies

Technology qa vomb fomc fcostd kcoste lcostf gcostg pG
h sF sK sL

Annual
electric output
(GWh)

Total variable
O&M ($2000
million)

Total Fixed
O&M ($2000
million)

Fuel cost
($2000
million)

Levelized
capital cost
($2000 million)

Labor cost
($2000
million)

Total
generation cost
($2000 million)

Average
generation cost
(2000 cents/kWh)

Fuel
cost
share

Capital
cost
share

Labor
cost
share

New scrubbed coal 4467.60 13.40 14.37 48.25 87.07 27.77 163.09 3.65 0.30 0.53 0.17
IGCC 4095.30 8.16 18.12 39.31 94.54 26.28 160.14 3.91 0.25 0.59 0.16
Conv. gas/oil combined
cycle

1992.90 3.97 2.99 63.38 16.85 6.97 87.20 4.38 0.73 0.19 0.08

Adv. gas/oil combined
cycle

3188.64 6.35 3.99 94.65 30.58 10.35 135.58 4.25 0.70 0.23 0.08

Conv. combustion turbine 1289.47 5.15 1.60 59.81 8.23 6.75 74.79 5.80 0.80 0.11 0.09
Adv. combustion turbine 1853.62 5.56 1.84 73.84 13.30 7.39 94.54 5.10 0.78 0.14 0.08
Fuel cells 76.21 1.52 0.07 2.46 2.69 1.59 6.74 8.84 0.36 0.40 0.24
Adv. nuclear 7446.00 3.13 57.13 136.14 266.21 60.26 507.67 6.21 0.29 0.58 0.13
Distributed generation/
base

15.07 0.09 0.03 0.61 0.20 0.12 0.93 6.16 0.66 0.22 0.13

Distributed generation/
peak

0.44 0.00 0.01 0.02 0.12 0.02 0.16 35.85 0.12 0.77 0.10

Biomass 700.80 2.03 4.49 7.81 22.17 6.51 36.49 5.21 0.21 0.61 0.18
MSW/landfill gas 236.52 0.00 2.88 – 5.51 2.89 8.39 3.55 0.00 0.66 0.34
Geothermal 416.10 – 3.50 – 11.10 3.50 14.61 3.51 0.00 0.76 0.24
Wind 175.20 – 1.27 – 6.31 1.27 7.58 4.33 0.00 0.83 0.17
Solar thermal 367.92 – 4.78 – 32.62 4.78 37.40 10.16 0.00 0.87 0.13
Solar PV 13.14 – 0.05 – 2.46 0.05 2.51 19.11 0.00 0.98 0.02
New hydro 197.10 0.46 0.38 – 21.69 0.83 22.52 11.43 0.00 0.96 0.04
Existing hydro 197.10 0.46 0.38 – 2.51 0.83 3.35 1.70 0.00 0.75 0.25
a q=size×cf× (24 h/day)× (365 days/year).
b vom=q×uvom.
c fom=size×ufom.
d fcost=q×hrt×pF.
e kcost= r×size×k / (1−e−rT), r=10%, T=15 years.
f lcost=vom+fom.
g gcost=fcost+kcost+ lcost.
h pG=gcost /q.
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Table 5 shows the final benchmark technology-specific cost shares that result from these
assumptions, which define the parameters s̄TECH(tech, fuel, i) and s̄TECH(tech, fuel, f ). In
comparison with Boehringer (1998: Table 2) and Frei et al. (2003: Table 3), the estimates in Table 5
allocate larger shares of total costs to inputs of labor and fuel, and a smaller share to capital, except
in the case of coal technologies.

4.4. Disaggregated capital input by activity

Bottom-up shares of capital by activity were derived using data on the values of current-cost net
stocks and depreciation of over sixty different classes of capital assets in the electric utility industry
from the BEATangible Wealth Survey (Herman 2000). Each asset class was allocated to OH, TD
or GEN by assigning to it a subjective probability of belonging to one or more of these activities.
The probability weights are shown in Table 6. Capital input to each activity was computed by
summing up the value of depreciation, and the value of the stock multiplied by the rate of interest
for each asset, and then summing over all classes of assets. The shares of each activity in the
resulting value of total capital input define the vector s̄K

ACT.

5. Results and discussion

The model in Section 3 is initialized and run using the data in Section 4. Its solution generates
the disaggregated representation of the electric power sector in Table 7, dividing the sector's
Table 5
Benchmark cost shares and unit output costs for electric power technologies

Technology Unit cost
(2000 ¢/kWh)

Factor inputs Fuel inputs AEO technology

Labor Capital Coal Oil Nat.
gas

Nat.
res.

A. Coal
ST 3.65 0.17 0.53 0.30 – – – New scrubbed coal
CC 3.91 0.16 0.59 0.25 – – – Integrated coal-gasification combined cycle

B. Petroleum
IC 5.80 0.09 0.11 – 0.80 – – Conv. combustion turbine
GT 5.80 0.09 0.11 – 0.80 – – Conv. combustion turbine
ST 5.80 0.09 0.11 – 0.80 – – Conv. combustion turbine
CT 5.80 0.09 0.11 – 0.80 – – Conv. combustion turbine
CC 4.38 0.08 0.19 – 0.73 – – Conv. gas/oil combined cycle

C. Natural gas
IC 5.10 0.08 0.14 – – 0.78 – Adv. combustion turbine
GT 5.10 0.08 0.14 – – 0.78 – Adv. combustion turbine
ST 5.10 0.08 0.14 – – 0.78 – Adv. combustion turbine
CT 5.10 0.08 0.14 – – 0.78 – Adv. combustion turbine
CC 4.25 0.08 0.22 – – 0.70 – Adv. gas/oil combined cycle

D. “Fixed-factor” energy resources
Hydro 1.70 0.25 0.55 – – – 0.20a Existing hydro
Nuclear 6.21 0.13 0.58 – – – 0.31 Advanced nuclear
Wind 4.33 0.17 0.63 – – – 0.20a Wind
Biomass 5.21 0.18 0.61 – – – 0.21 Biomass
Geothermal 3.51 0.24 0.56 – – – 0.20a Geothermal
Solar 14.64 0.07 0.73 – – – 0.20a 50–50 avg. of solar thermal and photovoltaic
a Assumed shares of fixed-factor energy resource inputs.



Table 6
Estimates of benchmark capital input to activities

Asset class BEA year 2000
dataa

Probability Disaggregated stocksa Disagg. depreciationa Disagg. capital inputa,b

Stock Deprec. OH TD GEN OH TD GEN OH TD GEN OH TD GEN

Computers and softwarec 5266 2190 0.5 – 0.5 2633 – 2633 1095 – 1095 1358 – 1358
Communication equipment 6514 761 0.3 0.3 0.3 2171 2171 2171 254 254 254 471 471 471
Instruments 14,914 2119 0.5 – 0.5 7457 – 7457 1060 – 1060 1805 – 1805
Photocopy and related equipment 943 192 1.0 – – 943 – – 192 – – 286 – –
Office and accounting equipment 181 58 1.0 – – 181 – – 58 – – 76 – –
Nuclear fuel rods 6323 1734 – – 1.0 – – 6323 – – 1734 – – 2366
Other fabricated metal products 7735 747 – – 1.0 – – 7735 – – 747 – – 1521
Steam engines 33,558 1755 – – 1.0 – – 33,558 – – 1755 – – 5111
Internal combustion engines 669 147 – – 1.0 – – 669 – – 147 – – 214
Metal working machinery 1845 228 – – 1.0 – – 1845 – – 228 – – 413
Special industry machinery, n.e.c. 2285 246 – – 1.0 – – 2285 – – 246 – – 475
General industrial machinery 12,325 1386 – – 1.0 – – 12,325 – – 1386 – – 2,619
Electrical transmission and distrib. 108,604 5479 – 1.0 – – 108,604 – – 5479 – – 16,339 –
Trucks, buses, and truck trailers 9214 1880 0.5 0.5 – 4607 4607 – 940 940 – 1401 1401 –
Autos 1982 587 1.0 – – 1982 – – 587 – – 785 – –
Aircraft 472 53 1.0 – – 472 – – 53 – – 100 – –
Furnitured 2818 342 1 – – 2818 0 0 342 0 0 624 0 0
Farm tractors 300 48 0.5 0.5 – 150 150 – 24 24 – 39 39 –
Construction tractors 1058 182 0.3 0.3 0.3 353 353 353 61 61 61 96 96 96
Agricultural mach., ex. tractors 28 4 0.5 0.5 – 14 14 – 2 2 – 3 3 –
Construction mach., ex. tractors 9107 1463 0.3 0.3 0.3 3035 3035 3035 488 488 488 791 791 791
Service industry machinery 1106 178 1.0 – – 1106 – – 178 – – 289 – –
Household appliances 7 1 1.0 – – 7 – – 1 – – 2 – –
Other electrical equipment, n.e.c. 424 85 0.3 0.3 0.3 141 141 141 28 28 28 42 42 42
Other nonresidential equipment 363 56 0.5 0.5 182 182 28 28 – 46 46 –
Industrial buildings 2790 86 0.5 – 0.5 1395 – 1395 43 – 43 183 – 183
Office buildings 1793 41 1.0 – – 1,793 – – 41 – – 220 – –
Electric light and power 545,380 11,368 – 0.5 0.5 – 272,690 272,690 – 5684 5684 – 32,953 32,953
Total 778,004 33,416 – – – 31,440 391,947 354,615 5474 12,987 14,955 8,618 52,182 50,416
a Million 2000 dollars.
b Input=Depreciation+r×Stock, r=10%.
c Composite of mainframe computers, personal computers, computer printers, computer terminals, computer tape drives, computer storage devices, integrated systems,

prepackaged software, custom software and own-account software.
d Composite of household furniture and other furniture.
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244.7 billion dollar gross output into 26.9 billion dollars of tax payments, and 19.3 billion of
overhead, 124.4 billion of transmission and distribution, and 74.1 billion of generation
activities.10 Comparison of the row totals with the relevant column in the SAM in Fig. 4 confirms
that the allocation procedure preserves the row balance necessary for market clearance at the
macro level. Overhead activities use 9% of the sector's labor, 8% of its capital, and 13% of its
input of intermediate non-fuel commodities. Transmission and distribution employs 66% of the
labor, 48% of the capital and 87 of intermediate materials. Generation accounts for 24% of labor,
44% of capital, and, by construction, none of the sector's non-fuel intermediate inputs and all of
its inputs of fuel and fixed-factor energy resources.

Of the technologies comprising generation, coal is the largest with 62% of the value of that
activity, followed by nuclear and hydro with 15 and 11%, natural gas and oil with 9 and 4%, and
renewables making up less than one-tenth of 1%. The importance of coal technologies is also
evident from their command of the inputs to generation, with coal, gas and oil accounting for 65,
24 and 11% of the total value of fossil fuels, respectively. In terms of the distribution of labor
inputs to generation, coal accounts for 62%, followed by hydro with 18%, nuclear with 13%, gas
with 5% and oil with 2%. Similarly, the lion's share of capital input to generation goes to coal,
which accounts for 67%, followed by hydro with 18%, nuclear with 13%, gas with 5% and oil
with 2%. Finally, even though renewables are relatively resource-intensive technologies, their
output is so small that virtually all of the fixed-factor energy resource is concentrated in the two
large-scale non-fossil technologies, nuclear (65%) and hydro (35%).

The technology cost shares that are implied by this allocation are shown in Table 8, which may
be contrasted with those in Table 3 of Boehringer et al. (2003). In addition to their greater
technology detail the current estimates differ from Boehringer et al.'s in a number of ways. That
study assumes a nesting structure similar to Fig. 2(b), which treats each technology as a composite
of OH, TD and GEN with intermediate non-fuel commodities as inputs. The input cost shares for
coal-fired technologies are roughly similar (taking into account this study's classification of
O&M as labor), but those for oil-and gas-fired technologies differ radically. While oil and gas
generation's labor-cum-material shares are similar, the present results impute the lion's share of
their costs of to fuel, as opposed to Boehringer et al.'s attribution of 50–60% of costs to capital.
For nuclear, capital's share is also smaller in the present results, reflecting the disaggregation of
physical plant and equipment from fixed-factor energy resources. Our labor share is also much
larger, partially reflecting the value that Boehringer et al. allocated to that technology's material
inputs. Lastly, this pattern of differences is similar for hydro and wind, except that Boehringer et
al. did not specify material inputs to these technologies. Here too, cost shares are lower for capital
(even when resources are included) and higher for labor.

This comparison raises an important point, which, although implicit in the inter-regional
differentiation of the cost share estimates in the Boehringer et al. study, is not emphasized there. It is
that technologies' input cost share parameters may far less generic-in the sense of being engineering
characteristics of the technologies themselves — than bottom-up studies appear to acknowledge.
Rather, as argued throughout this paper, the values of these parameters are significantly influenced
by the ruling relative prices in the particular economy inwhich the technologies are operated by cost-
minimizing producers. The implication is that a given technology's input cost coefficients may well
10 Bounds on the error components ε were added to improve the numerical stability of the optimization problem.
Bounding the magnitude of the error terms on generation end thermal efficiency to 45%, and those on technologies'
inputs and activities' shares of capital to 25%, resulted in convergence to an interior solution with maximum reduced
costs of less than 10−7 in fewer than 120 iterations.



Table 7
The main result: disaggregation of the electric power sector

OH TD GEN Total

Coal Natural gas Petroleum Non-fossil

ST CC IC GT ST CT CC IC GT ST CT CC Hydro Nucl. Wind Solar Bio. Geo.

1 – – 1.446 0.001 – – – – – – – – – – – – – – – – 1.448
2 0.011 0.073 – – – – – – – – – – – – – – – – – – 0.084
3 – – – – 0.001 0.06 0.327 0.123 0.014 – – – – – – – – – – – 0.526
4 0.002 0.013 – – – – – – – – – – – – – – – – – – 0.015
5 0.003 0.021 – – – – – – – – – – – – – – – – – – 0.024
6 – – – – – – – – – 0.004 0.018 0.212 0.003 3.6×

10–4
– – – – – – 0.238

7 0.016 0.105 – – – – – – – – – – – – – – – – – – 0.121
8 0.047 0.303 – – – – – – – – – – – – – – – – – – 0.350
9 0.127 0.819 – – – – – – – – – – – – – – – – – – 0.945
10 0.304 1.962 – – – – – – – – – – – – – – – – – – 2.265
11 0.337 2.175 – – – – – – – – – – – – – – – – – – 2.512
12 0.406 2.934 0.67 8.110−4 1.3×

10−4
0.005 0.032 0.013 0.002 4.8×

10−4
0.002 0.024 3.4×

10−4
3.3×
10−5

0.195 0.138 3.9×
10−6

1.8×
10−7

6.5×
10−4

3.8×
10−4

4.422

13 0.674 4.037 2.446 0.003 2.2×
10−4

0.008 0.056 0.023 0.005 5.9×
10−4

0.002 0.029 4.1×
10−4

6.7×
10−5

0.451 0.651 1.5×
10−5

1.9×
10−6

0.002 8.8×
10−4

8.389

14 – – – – – – – – – – – – – – 0.153 0.288 4.6×
10−6

5.1×
10−7

7.6×
10−4

3.1×
10−4

0.442

Total 1.927 12.441 4.562 0.005 0.002 0.072 0.416 0.160 0.020 0.005 0.021 0.266 0.004 4.6×
10−4

0.798 1.077 2.3×
10−5

2.6×
10−6

0.004 0.002 21.781

GEN 4.567 0.669 0.296 1.880 7.413

Inputs: 1. Coal, 2. Electric Power, 3. Natural Gas, 4. Agriculture, 5. Crude Oil and Gas, 6. Petroleum, 7. Energy Intensive Manufacturing., 8. Other Manufacturing, 9. Transportation,
10. Services, 11. Rest of the Economy, 12. Labor, 13. Capital, 14. Natural Resources.
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Table 8
Estimated input cost shares by technology

Technology Factor Inputs Fuel Inputs

Labor Capital Coal Oil Nat. Gas Nat. Res.

A. Coal
ST 0.15 0.54 0.32 – – –
CC 0.16 0.58 0.26 – – –

B. Petroleum
IC 0.09 0.11 – 0.80 – –
GT 0.08 0.09 – 0.83 – –
ST 0.09 0.11 – 0.80 – –
CT 0.09 0.11 – 0.81 – –
CC 0.07 0.15 – 0.78 – –

C. Natural gas
IC 0.07 0.12 – – 0.80 –
GT 0.07 0.1 – – 0.83 –
ST 0.08 0.13 – – 0.79 –
CT 0.08 0.14 – – 0.77 –
CC 0.08 0.23 – – 0.69 –

D. “Fixed-factor” energy resource
Hydro 0.24 0.56 – – – 0.19
Nuclear 0.13 0.61 – – – 0.27
Wind 0.17 0.63 – – – 0.20
Solar 0.07 0.73 – – – 0.20
Biomass 0.18 0.61 – – – 0.21
Geothermal 0.24 0.56 – – – 0.20
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differ from one economy to another. This possibility should givemodel-builders pause before simply
borrowing cost-share estimates from prior studies when data are available that are specific to the
economy under investigation. The methodology developed here thus provides a useful tool for
comparing how the distribution of technologies' input costs varies among economies with
significant differences in the relative prices of capital, labor and fuels.

One potential caveat is that the heterogeneity in our estimated cost shares may be less a function of
the broader economy's dominance over the energy system and more an artifact of the errors
introduced by the calibration procedure. While it is important to consider the magnitude and
distribution of the errors, the general agreement between our estimates and the bottom-up information
onwhich the calibration procedure is based suggests that it is the patterns in the underlying data which
are driving inter-technology differences in our estimates of input characteristics. Table 9 provides an
assessment of the performance of the calibration procedure, showing that the allocation of inputs by
technology generally reflects the engineering data to a reasonable degree of accuracy. The input share
errors ε are all under 10% for fossil fuel and natural resource inputs (with the exception of nuclear
power) and under 15% for labor. There are significant problems, however, in the capital allocations for
oil- and natural gas-fired gas turbines (26 and 16%, respectively), and oil-fired combined-cycle
technologies (23%). Nevertheless, the errors in allocating capital by activity (εK) are all less than 2%.

The match between the distribution of electric output and technologies' benchmark generation
shares is also generally good. The errors εGEN are under 10% with the exceptions of gas-fired
combustion turbines (10%), and especially steam turbines (43%). However, these technologies
together make up less than 9% of the total kWh of electric output, which reduces the likelihood
that the overall impact of these errors is severe. But by the same token, the comparatively small



Table 9
The performance of the calibration procedure

Technology Inputs Generation Thermal efficiency

εTECH(%) Quantity (1012 kWh) εGEN η (%) εη

Fuel Labor Capital Nat. res. Predicted Actual (%) Predicted Actual (%)

A. Coal
ST 5.7 −13.7 1.2 – 1.810 1.697 6.7 35.4 32.3 9.8
CC 5.3 −0.6 −2.1 – 0.002 0.002 0.0 39.9 37.8 5.5

B. Natural Gas
IC 3.1 −7.4 −13.0 – 5.1×10−4 5.1×10−4 −0.1 35.8 29.8 20.4
GT 6.2 −14.9 −25.9 – 0.021 0.022 −4.7 34.8 25.1 38.6
ST 1.0 −2.8 −3.8 – 0.118 0.208 −43.2 36.6 30.3 20.5
CT −0.8 1.7 3.3 – 0.045 0.051 −10.3 37.2 37.0 0.6
CC −1.6 0.1 0.4 – 0.007 0.007 −1.0 50.1 50.7 −1.2

C. Petroleum
IC 0.2 −0.7 −0.8 – 0.001 0.001 0.2 30.7 30.2 1.7
GT 3.7 −13.1 −16.0 – 0.005 0.005 0.6 29.6 22.9 29.4
ST 0.0 −0.3 0.2 – 0.066 0.062 7.1 30.7 32.3 −4.8
CT 1.0 −3.4 −4.2 – 9.8×10−4 9.8×10−4 0.1 30.4 28.0 8.9
CC 7.2 −9.8 −23.4 – 1.5×10−4 1.5×10−4 0.0 41.7 32.7 27.6

D. “Fixed-Factor” Energy Resource
Hydro – −2.4 2.6 −4.2 0.681 0.705 −3.4 – – –
Nuclear – −1.6 4.3 −14.8 0.251 0.248 1.1 – – –
Wind – – – – 7.6×10−6 7.8×10−6 – – – –
Biomass – – – – 2.5×10−7 2.5×10−7 – – – –
Geothermal – – – – 0.001 0.001 – – – –
Solar – – – – 6.5×10−4 6.5×10−4 – – – –
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error in coal steam turbine output (6.7%) is much more consequential, given that this technology
accounts for over 56% of total kWh produced.

There is far less consistency between the first-law efficiencies of conversion implied by the
data and those implicit in the model's allocation. For half of the fossil fuel technologies, the errors
εη are on the order of 20–30%. Moreover, the predicted efficiencies consistently over-estimate
the benchmark bottom-up values. The likely explanation for this phenomenon is systematic bias
in the efficiency metric used to calibrate the allocation. The numerator of η̄TECH tabulates plants'
generation not only for dispatch or spinning reserves but also for periods of standby operation,
throughout which their thermal efficiencies are significantly lower than their “nameplate” heat
rates might suggest. Although the failure of either the economic data or the allocation mechanism
to capture this phenomenon remains a puzzle, the predicted efficiencies are in any case all within
plausible ranges, which inspires confidence in the veracity of the results.

Finally, the number of bottom-up technologies and associated characteristics, the dearth of
information on the range of uncertainty in the values of these parameters, as well as the variety
of potential matches between the AEO and the Form 906 technologies, all make a full-blown
sensitivity analysis prohibitively complicated, and in any case too lengthy, to include here. Tests
of robustness focused on examining the sensitivity of the calibration procedure to the key
assumptions of capital amortization and fixed-factor supply and demand.11 Varying the interest
11 The results of these tests are available from the author upon request.
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rate and payback period in the calculation of technologies' levelized capital costs was found to
induce substantial changes in the benchmark cost shares and the resulting allocation of inputs,
but only when the cost of capital was significantly reduced below the base-case level.12 Other,
more reasonable parameter combinations caused shifts in the cost shares and the allocation of
less than 10%.

The performance of the model was also relatively insensitive to varying assumptions about
both the natural resource supply in the SAM and the cost shares of fixed-factor inputs to
renewables. Doubling and halving both the assumed resource cost shares or the resource supply in
the SAM exerted only a small influence on either the allocation of intermediate goods or the
output levels of fossil fuel technologies. However, they substantially affected both the allocation
of primary factor inputs among, and the predicted levels of output of, carbon-free technologies.
Moreover, for the two large-scale non-fossil technologies hydro and nuclear, in no case were the
combined errors in the share of generation smaller than in the base case, which further strengthens
the case for the robustness of the allocation in Table 7. Nevertheless, this result also highlights the
need for improved estimates of the value of these resource inputs in the macroeconomic accounts,
and for disaggregation of their contribution to technologies' fixed and variable costs in bottom-up
data.

6. Conclusion

This paper has developed a procedure for disaggregating the top-down macroeconomic
representation of the electric power sector in a SAM for the U.S. into specific electricity supply
technologies in a manner that is consistent with these technologies' bottom-up engineering
characteristics. Starting with a SAM-based top-down model of the electric power sector and cost
shares derived from engineering data, a calibration procedure was developed that apportioned
inputs to the electric power sector in the SAM among discrete generation technologies by
minimizing the deviation of the allocation of inputs from that implied by engineering cost shares,
subject to the zero-profit and market-clearance constraints of the sector's macroeconomic
production structure. The results demonstrate the success of this approach, on one hand
emphasizing its robustness to variations in the assumptions employed in constructing the data, and
on the other the ability to assimilate and reconcile disparate, inconsistent sources of data in a
manner that is both transparent and replicable.

Still, much can be done to refine the approach developed here. One important limitation of the
paper is its focus on the point estimates generated the calibration procedure while paying too little
attention to uncertainties in the activity totals in the top-down model or input cost shares of the
bottom-up data. Methodologically, this shortcoming may be addressed by the use of more
sophisticated matrix-balancing techniques such as maximum-entropy methods (Golan et al.,
1996; Robinson et al., 2001) to estimate confidence bounds on the allocation. But the key
prerequisite to this work will be the development of improved bottom-up and top-down datasets
to which the procedure in the paper can be applied, perhaps relying on multiple data points over a
number of years, but most crucially with a better resolution the value of inputs of fixed-factor
primary energy resources to nuclear, hydro and renewable technologies.

Finally, it is natural to ask how the results developed here can be used. The answer to this
question is given in a companion article (Sue Wing, in press), which constructs a hybrid model of
the U.S. economywhich is calibrated to the data in Fig. 4 and Table 7, and compares its response to
12 This was found for r=8% and T=30 years.
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emission taxes with that of an identical top-down model that contains no technology detail. Future
work will also illustrate how these benchmark data can be used to incorporate technology detail
into a fully dynamic general equilibrium simulation of the kind described in Sue Wing and Popp
(2006).

References

Boehringer, C., 1998. The synthesis of bottom-up and top-down in energy policy modeling. Energy Economics 20,
233–248.

Boehringer, C., Hoffmann, T., Loeschel, A., 2003. Dismantling Nuclear Power in Europe: Macroeconomic and
Environmental Impacts. ZEW Discussion Paper, vol. 03–15. Center for European Economic Research, Mannheim.

Boehringer, C., Rutherford, T.F., 2005. Integrating Bottom-Up into Top-Down: A Mixed Complementarity Approach.
ZEW Discussion Paper, vol. 05–28.

Brooke, A., Kendrick, D., Meeraus, A., Raman, R., 1998. GAMS: A User’s Guide. GAMS Development Corp.,
Washington D.C.

DOE/EIA, 1999. The Comprehensive Electricity Competition Act: A Comparison of Model Results, SR/OIAF/99–04.
U.S. Department of Energy, Energy Information Administration, Washington D.C.

DOE/EIA, 2003a. Assumptions to the Annual Energy Outlook, DOE/EIA-0554(2003). U.S. Department of Energy,
Energy Information Administration, Washington D.C.

DOE/EIA, 2003b. Electric Power Annual 2002, DOE/EIA-0348(2002). U.S. Department of Energy, Energy Information
Administration, Washington D.C.

Drud, A., 1985. CONOPT: a GRG code for large sparse dynamic nonlinear optimization problems. Mathematical
Programming 31, 153–191.

Drud, A., 1994. CONOPT: a large scale GRG code, ORSA. Journal on Computing 6, 207–216.
Drud,A., 1997. Interactions between nonlinear programming andmodeling systems.Mathematical Programming 79, 99–123.
Frei, C.W., Haldi, P.-A., Sarlos, G., 2003. Dynamic formulation of a top-down and bottom-up merging energy policy

model. Paper Energy Policy 31, 1017–1031.
Golan, G., Judge, G., Miller, D., 1996. Maximum Entropy Econometrics. Wiley.
Goulder, L.H., 1995. Effects of carbon taxes in an economy with prior tax distortions: an intertemporal general equilibrium

analysis. Journal of Environmental Economics and Management 29 (3), 271–297.
Grubb, M., Edmonds, J., ten Brink, P., Morrison, M., 1993. The costs of limiting fossil-fuel CO2 emissions: a survey and

analysis. Annual Review of Energy and the Environment 18, 397–478.
Hall, D.G., Hunt, R.T., Reeves, K.S., Carroll, G.R., 2003. Estimation of Economic Parameters of U.S. Hydropower

Resources. Idaho National Engineering and Environmental Laboratory. INEEL/EXT-03-00662.
Hamachi, K., Edwards, J.L., Marnay, C., 2003. Distributed Generation Capabilities of the National Energy Modeling

System. Lawrence Berkeley National Laboratory Report No. LBNL-52432.
Haq, Z., 2002. Biomass for electricity generation. NEMS Modeling and Analysis Report. U.S. Department of Energy,

Energy Information Administration, Washington D.C.
Howitt, R.E., 1995. Positive mathematical programming. American Journal of Agricultural Economics 77, 329–342.
IPCC, 2001. Contribution of Working Group III to the Third Assessment Report of the Intergovernmental Panel on

Climate Change (IPCC). Cambridge University Press, Cambridge.
Jacobsen, H.K., 2000. Technology diffusion in energy-economy models: the case of Danish vintage models. Energy

Journal 21, 43–72.
Kahn, E., 1995. Comparison of financing costs for wind turbine and fossil powerplants. Lawrence Berkeley National

Laboratory Report No. LBL-36122.
Kehoe, T.J., 1998. Social Accounting Matrices and Applied General Equilibrium Models. In: Begg, I., Henry, S.G.B.

(Eds.), Applied Economics and Public Policy. Cambridge University Press, Cambridge, pp. 59–87.
King, B.B., 1985. In: Pyatt, Round (Eds.), “What is a SAM?" In Social Accounting Matrices, a Basis for Planning. The

World Bank, Washington D.C., pp. 17–51.
Kumbaroglu, G., Madlener, R., 2003. Energy and Climate Policy Analysis with the Hybrid Bottom-Up Computable

General Equilibrium Model SCREEN: The Case of the Swiss CO2 Act. Annals of Operations Research 121 (1–4),
181–203.

Kypreos, S., 1998. The Global MARKAL-MACRO Trade Model. In: Laege, E., Schaumann, P. (Eds.), Energy Models for
Decision Support: New Challenges and Possible Solutions, Proceedings of a Conference held in Berlin, May 4–5.
OECD/ETSAP, Paris, pp. 99–112.



27I. Sue Wing / Energy Economics xx (2006) xxx–xxx

ARTICLE IN PRESS
McFarland, J.R., Reilly, J.M., Herzog, H.J., 2004. Representing energy technologies in top-down economic models using
bottom-up information. Energy Economics 26 (4), 685–707.

Manne, A.S., Richels, R.G., Mendelsohn, R., 1995. MERGE: a Model for Evaluating Regional and Global Effects of GHG
reduction policies. Energy Policy 23, 17–34.

National Academy of Sciences, 1991. Policy Implications of Greenhouse Warming. National Academies Press,
Washington DC.

Nordhaus, W.D., Boyer, J., 1999. Warming the World: Models of Global Warming. MIT Press, Cambridge.
Nuclear Energy Agency, 1994. The Economics of the Nuclear Fuel Cycle. OECD, Paris.
Paltsev, S., Reilly, J.M., Jacoby, H.D., Eckaus, R.S., McFarland, J., Sarofim, M., Asadoorian, M., Babiker, M., 2005. The

MIT Emissions Prediction and Policy Analysis (EPPA) Model: Version 4, MIT Joint Program on the Science & Policy
of Global Change Report No. 125, Cambridge MA.

Reinert, K.A., Roland-Holst, D.W., 1992. A detailed social accounting matrix for the USA: 1998. Economic Systems
Research 4 (2), 173–187.

Robinson, S., Cattaneo, A., El-Said, M., 2001. Updating and estimating a social accounting matrix using cross-entropy
methods. Economic System Research 13 (1), 47–64.

Rutherford, T.F., Paltsev, S.V., 1999. From an Input-Output Table to a General Equilibrium Model: Assessing the Excess
Burden of Indirect Taxes in Russia, Economic Dept. Working Paper, University of Colorado at Boulder (http://mpsge.
org/papers/exburden.pdf).

Schäfer, A., Jacoby, H.D., 2005. Technology detail in a multisector CGE model: transport under climate policy. Energy
Economics 27 (1), 1–24.

Schneider, M.H., Zenios, S.A., 1990. A comparative study of algorithms for matrix balancing. Operations Research 38, 439–455.
Sue Wing, 2001. Induced Technical Change in Computable General Equilibrium Models for Climate Policy Analysis,

unpublished Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge MA.
Sue Wing, 2004. Computable General Equilibrium Models and Their Use in Economy-Wide Policy Analysis: Everything

you Ever Wanted to Know (but were afraid to ask). MIT Joint Program on the Science and Policy of Global Change
Technical Note, vol. 6. Cambridge MA.

Sue Wing, I., in press. The Synthesis of Bottom-Up and Top-Down Approaches to Climate Policy Modeling: Electric
Power Technologies and the Cost of Limiting U.S. CO2 Emissions, Energy Policy.

Sue Wing, I., Popp, D., 2006. Representing Endogenous Technological Change in Economic Models, Chapter 7. In:
Hanneman, M., Farrell, A. (Eds.), Managing Greenhouse Gas Emissions in California, U.C. Berkeley California
Climate Change Center Report. 〈http://calclimate.berkeley.edu/7_Endogenous_Technological_Change.pdf〉.

Wilson, D., Swisher, J., 1993. Exploring the gap: top-down versus bottom-up analyses of the cost of mitigating global
warming. Energy Policy 21, 249–263.

http://calclimate.berkeley.edu/7_Endogenous_Technological_Change.pdf

	The synthesis of bottom-up and top-down approaches to climate policy modeling: Electric power t.....
	Introduction
	Reconciling top-down and bottom-up approaches to modeling the electricity sector
	Using social accounting matrices to calibrate a top-down production structure
	A bottom-up production structure: calibration difficulties
	The essence of the problem to be solved

	A model of the electric power sector
	The top-down production structure
	Bottom-up detail
	The calibration procedure

	The data
	A social accounting matrix for the U.S. in the year 2000
	Electricity generation and fuel use statistics
	Bottom-up characteristics of electric generation technologies
	Disaggregated capital input by activity

	Results and discussion
	Conclusion
	References


